metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(4-methyl­benzene­thiol­ato)cadium(II)]-μ-1,3-di-4-pyridylpropane]

aFaculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn

(Received 18 March 2009; accepted 21 March 2009; online 28 March 2009)

In the title compound, [Cd(C7H7S)2(C13H14N2)]n, the unique CdII ion, located on a twofold rotation axis, is coordinated by two S atoms and two N atoms in a slightly distorted tetra­hedral environment. Symmetry-related CdII ions are linked via bridging 1,3-di-4-pyridylpropane ligands, forming a zig-zag chain-structure parallel to [001]. In the crystal structure, there are weak intra­chain ππ stacking inter­actions between benzene rings, with a centroid–centroid distance of 3.825 (7) Å, and pairs of chains are inter­digitated with respect to the 4-methyl­benzene­thiol­ate groups.

Related literature

For background information on coordination polymers, see: James (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]); Wang et al. (2005[Wang, X.-L., Qin, C., Wang, E.-B., Li, Y.-G., Su, Z.-M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824-5827.]); Cheng et al. (2007[Cheng, A.-L., Liu, N., Yue, Y.-F., Jiang, Y.-W., Gao, E.-Q., Yan, C.-H. & He, M.-Y. (2007). Chem. Commun. pp. 407-409.]); Han & Zhou (2008[Han, L. & Zhou, Y. (2008). Inorg. Chem. Commun. 11, 385-387.]). For information on the 1,3-bis­(4-pyrid­yl)propane ligand, see: Han et al. (2007[Han, L., Valle, H. & Bu, X.-H. (2007). Inorg. Chem. 46, 1511-1513.]); Carlucci et al. (2002[Carlucci, L., Ciani, G., Proserpio, D.-M. & Rizzato, S. (2002). Coord. Chem. Rev. 4, 121-129.]). For the synthetic procedure, see: Dance et al. (1987[Dance, I. G., Garbutt, R. G., Craig, D. C. & Scudder, M. L. (1987). Inorg. Chem. 26, 4057-4064.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H7S)2(C13H14N2)]

  • Mr = 557.03

  • Monoclinic, C 2/c

  • a = 11.922 (2) Å

  • b = 16.792 (3) Å

  • c = 12.862 (3) Å

  • β = 91.06 (3)°

  • V = 2574.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 298 K

  • 0.45 × 0.25 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.655, Tmax = 0.837

  • 12609 measured reflections

  • 2948 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.09

  • 2948 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N1 2.320 (2)
Cd1—S1 2.4370 (9)
N1—Cd1—N1i 93.43 (11)
N1—Cd1—S1 103.83 (7)
N1i—Cd1—S1 108.77 (7)
S1—Cd1—S1i 131.71 (4)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The search for new crystalline coordination polymers is fueled by the use of such materials in catalysis, separations, magnetism, and optoelectronics (James, 2003). Recently, interest has been devoted to the entanglement of 1D coordination polymers resulting in the architectures of an overall higher dimensionality (Wang et al., 2005; Cheng et al., 2007). The organic ligand, 1,3-bis(4-pyridyl)propane (bpp), is a long and flexible multi-functional linker, which can adopt different conformations with respect to the relative orientations of the CH2 groups (Han et al., 2007; Carlucci et al., 2002). We have reported a 2-D interwoven network entangled from zigzag chains using the bpp ligand as building unit (Han & Zhou, 2008). In an attempt to synthesize further interwoven networks we have synthesized the one-dimensional polymer formed from Cd(SC6H4Me-4)2 and bpp and its crystal structure is reported herein.

The title compound, [Cd(SC6H4Me-4)2(bpp)]n, is a one-dimensional chain structure and the asymmetric unit is shown in Fig. 1. The unique CdII ion is coordinated by two S atoms and two N atoms adopting a slightly distorted tetrahedral coordination geometry. In the chain structure, there are weak π···π stacking interactions between two symmetry related benzene rings of the 4-methylbenzenethiolate groups, within the same chain. The centroid-to-centroid distance (Cg···Cgi) is 3.825 (7) Å (symmetry code: (i) -x, y, -z+1/2). The dihedral angle between two benzene rings is 3.2 (7)° (Fig. 2). Figure 3 shows part of the crystal structure of the title compound illustrating two interdigitated 1-D chains.

Related literature top

For background information on coordination polymers, see: James (2003); Wang et al. (2005); Cheng et al. (2007); Han & Zhou (2008). For information on the 1,3-bis(4-pyridyl)propane ligand, see: Han et al. (2007); Carlucci et al. (2002). For the synthetic procedure, see: Dance et al. (1987).

Experimental top

Cd(SC6H4Me-4)2 was synthesized according to the literature (Dance et al., 1987). A mixture of Cd(SC6H4Me-4)2 (99.5 mg) and 1,3-bis(4-pyridyl)propane (50.1 mg) in DMF (6.0 g) solution was stirred for 30 min. The solution was allowed to stand at room temperature for 5 days. Colorless block crystals of the title complex were obtained and collected by filtration with a 30% yield.

Refinement top

The unique H atom on C1 was located in a difference map and refined freely. Other H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for phenyl and pyridyl H atoms, C—H = 0.96 Å and Uiso(H) =1.5Ueq(C) for methyl, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the 1-D chain structure of title complex with 30% probability ellipsoids.
[Figure 3] Fig. 3. Part of the crsytal structutre showing two interdigitated 1-D chains.
catena-Poly[[bis(4-methylbenzenethiolato)cadium(II)]-µ-1,3-di-4- pyridylpropane] top
Crystal data top
[Cd(C7H7S)2(C13H14N2)]F(000) = 1136
Mr = 557.03Dx = 1.437 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1774 reflections
a = 11.922 (2) Åθ = 3.2–27.5°
b = 16.792 (3) ŵ = 1.03 mm1
c = 12.862 (3) ÅT = 298 K
β = 91.06 (3)°Block, colorless
V = 2574.5 (9) Å30.45 × 0.25 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2948 independent reflections
Radiation source: fine-focus sealed tube2587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2121
Tmin = 0.655, Tmax = 0.837l = 1614
12609 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0411P)2 + 2.0003P]
where P = (Fo2 + 2Fc2)/3
2948 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Cd(C7H7S)2(C13H14N2)]V = 2574.5 (9) Å3
Mr = 557.03Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.922 (2) ŵ = 1.03 mm1
b = 16.792 (3) ÅT = 298 K
c = 12.862 (3) Å0.45 × 0.25 × 0.18 mm
β = 91.06 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2948 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2587 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.837Rint = 0.046
12609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.53 e Å3
2948 reflectionsΔρmin = 0.90 e Å3
150 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.295756 (15)0.25000.04791 (11)
S10.18408 (7)0.35512 (5)0.22501 (8)0.0677 (2)
N10.0143 (2)0.20104 (12)0.11914 (17)0.0485 (5)
C10.00000.1037 (2)0.25000.0464 (8)
H10.065 (2)0.1374 (16)0.243 (2)0.050 (8)*
C20.0111 (3)0.05267 (16)0.1528 (2)0.0579 (7)
H2A0.07990.02190.15790.070*
H2B0.05120.01560.14850.070*
C30.0126 (3)0.10235 (14)0.05565 (19)0.0486 (6)
C40.1082 (3)0.14257 (19)0.0269 (2)0.0615 (7)
H4A0.17410.13730.06620.074*
C50.1060 (3)0.19035 (19)0.0598 (3)0.0607 (8)
H5A0.17160.21650.07790.073*
C60.0779 (3)0.16210 (17)0.0914 (2)0.0545 (7)
H6A0.14250.16820.13220.065*
C70.0822 (3)0.11328 (16)0.0054 (2)0.0551 (7)
H7A0.14880.08790.01130.066*
C80.1615 (2)0.45217 (16)0.2756 (2)0.0511 (6)
C90.1277 (3)0.46512 (18)0.3764 (2)0.0589 (7)
H9A0.11520.42180.41970.071*
C100.1120 (3)0.54131 (18)0.4140 (3)0.0621 (7)
H10A0.08980.54820.48230.075*
C110.1812 (3)0.51806 (19)0.2143 (2)0.0643 (8)
H11A0.20560.51140.14670.077*
C120.1646 (3)0.59429 (19)0.2530 (3)0.0686 (9)
H12A0.17820.63790.21050.082*
C130.1286 (3)0.60699 (18)0.3527 (3)0.0626 (8)
C140.1075 (4)0.6900 (2)0.3939 (4)0.0969 (14)
H14A0.08360.68670.46460.145*
H14B0.05020.71520.35220.145*
H14C0.17540.72050.39090.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05340 (18)0.04305 (16)0.04712 (17)0.0000.00332 (12)0.000
S10.0523 (4)0.0585 (4)0.0927 (6)0.0030 (3)0.0129 (4)0.0238 (4)
N10.0573 (14)0.0480 (12)0.0402 (11)0.0044 (10)0.0019 (10)0.0000 (9)
C10.059 (2)0.0403 (18)0.0402 (18)0.0000.0002 (17)0.000
C20.089 (2)0.0427 (13)0.0418 (13)0.0028 (14)0.0010 (14)0.0013 (11)
C30.0688 (17)0.0394 (12)0.0375 (12)0.0064 (11)0.0005 (12)0.0058 (9)
C40.0559 (17)0.077 (2)0.0511 (16)0.0052 (14)0.0066 (14)0.0122 (14)
C50.0511 (16)0.076 (2)0.0546 (17)0.0011 (14)0.0006 (14)0.0139 (14)
C60.0584 (16)0.0524 (15)0.0521 (15)0.0013 (13)0.0132 (13)0.0013 (12)
C70.0625 (17)0.0493 (14)0.0533 (16)0.0088 (13)0.0032 (14)0.0000 (12)
C80.0407 (13)0.0525 (14)0.0600 (16)0.0043 (11)0.0002 (12)0.0093 (12)
C90.0627 (18)0.0524 (16)0.0621 (17)0.0018 (13)0.0115 (15)0.0004 (13)
C100.0635 (18)0.0632 (18)0.0601 (17)0.0012 (14)0.0091 (15)0.0109 (14)
C110.069 (2)0.0673 (19)0.0569 (17)0.0094 (15)0.0043 (15)0.0023 (14)
C120.075 (2)0.0543 (17)0.076 (2)0.0070 (15)0.0042 (18)0.0067 (15)
C130.0561 (17)0.0512 (16)0.080 (2)0.0032 (13)0.0031 (16)0.0113 (14)
C140.098 (3)0.058 (2)0.136 (4)0.0021 (19)0.023 (3)0.020 (2)
Geometric parameters (Å, º) top
Cd1—N12.320 (2)C6—C71.379 (4)
Cd1—N1i2.320 (2)C6—H6A0.9300
Cd1—S12.4370 (9)C7—H7A0.9300
Cd1—S1i2.4370 (9)C8—C111.381 (4)
S1—C81.777 (3)C8—C91.383 (4)
N1—C61.333 (4)C9—C101.381 (4)
N1—C51.334 (4)C9—H9A0.9300
C1—C2ii1.523 (3)C10—C131.372 (4)
C1—C21.523 (3)C10—H10A0.9300
C1—H10.97 (3)C11—C121.389 (4)
C2—C31.503 (4)C11—H11A0.9300
C2—H2A0.9700C12—C131.376 (5)
C2—H2B0.9700C12—H12A0.9300
C3—C71.377 (4)C13—C141.513 (4)
C3—C41.381 (4)C14—H14A0.9600
C4—C51.373 (4)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
C5—H5A0.9300
N1—Cd1—N1i93.43 (11)N1—C6—H6A118.3
N1—Cd1—S1103.83 (7)C7—C6—H6A118.3
N1i—Cd1—S1108.77 (7)C3—C7—C6119.6 (3)
N1—Cd1—S1i108.77 (7)C3—C7—H7A120.2
N1i—Cd1—S1i103.83 (7)C6—C7—H7A120.2
S1—Cd1—S1i131.71 (4)C11—C8—C9117.7 (3)
C8—S1—Cd1100.62 (9)C11—C8—S1119.9 (2)
C6—N1—C5116.9 (2)C9—C8—S1122.4 (2)
C6—N1—Cd1118.72 (19)C10—C9—C8121.1 (3)
C5—N1—Cd1123.8 (2)C10—C9—H9A119.4
C2ii—C1—C2111.6 (3)C8—C9—H9A119.4
C2ii—C1—H1109.0 (17)C13—C10—C9121.5 (3)
C2—C1—H1109.5 (16)C13—C10—H10A119.3
C3—C2—C1111.9 (2)C9—C10—H10A119.3
C3—C2—H2A109.2C8—C11—C12120.5 (3)
C1—C2—H2A109.2C8—C11—H11A119.8
C3—C2—H2B109.2C12—C11—H11A119.8
C1—C2—H2B109.2C13—C12—C11121.7 (3)
H2A—C2—H2B107.9C13—C12—H12A119.1
C7—C3—C4117.1 (2)C11—C12—H12A119.1
C7—C3—C2121.7 (3)C10—C13—C12117.5 (3)
C4—C3—C2121.1 (3)C10—C13—C14120.9 (3)
C5—C4—C3120.0 (3)C12—C13—C14121.7 (3)
C5—C4—H4A120.0C13—C14—H14A109.5
C3—C4—H4A120.0C13—C14—H14B109.5
N1—C5—C4123.1 (3)H14A—C14—H14B109.5
N1—C5—H5A118.5C13—C14—H14C109.5
C4—C5—H5A118.5H14A—C14—H14C109.5
N1—C6—C7123.3 (3)H14B—C14—H14C109.5
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C7H7S)2(C13H14N2)]
Mr557.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)11.922 (2), 16.792 (3), 12.862 (3)
β (°) 91.06 (3)
V3)2574.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.45 × 0.25 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.655, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
12609, 2948, 2587
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.09
No. of reflections2948
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.90

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cd1—N12.320 (2)Cd1—S12.4370 (9)
N1—Cd1—N1i93.43 (11)N1i—Cd1—S1108.77 (7)
N1—Cd1—S1103.83 (7)S1—Cd1—S1i131.71 (4)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province (Y4080435), the Natural Science Foundation of Ningbo Municipal (2007A610024) and the K.C. Wong Magna Fund of Ningbo University.

References

First citationCarlucci, L., Ciani, G., Proserpio, D.-M. & Rizzato, S. (2002). Coord. Chem. Rev. 4, 121–129.  CAS Google Scholar
First citationCheng, A.-L., Liu, N., Yue, Y.-F., Jiang, Y.-W., Gao, E.-Q., Yan, C.-H. & He, M.-Y. (2007). Chem. Commun. pp. 407–409.  Web of Science CSD CrossRef CAS Google Scholar
First citationDance, I. G., Garbutt, R. G., Craig, D. C. & Scudder, M. L. (1987). Inorg. Chem. 26, 4057–4064.  CSD CrossRef CAS Web of Science Google Scholar
First citationHan, L., Valle, H. & Bu, X.-H. (2007). Inorg. Chem. 46, 1511–1513.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHan, L. & Zhou, Y. (2008). Inorg. Chem. Commun. 11, 385–387.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B., Li, Y.-G., Su, Z.-M., Xu, L. & Carlucci, L. (2005). Angew. Chem. Int. Ed. 44, 5824–5827.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds