organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o913-o914

2-[1-(2-Hy­droxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-6-methoxyphenol monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota 25200 Kuantan, Pahang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 20 March 2009; accepted 24 March 2009; online 28 March 2009)

The asymmetric unit of the title compound, C22H20N2O4·H2O, comprises a substituted benzimidazole molecule and a water mol­ecule of crystallization. The dihedral angles between the benzimidazole ring system and the two outer benzene rings are 16.54 (4) and 86.13 (4)°. The dihedral angle between the two hydr­oxy-substituted benzene rings is 82.20 (5)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds, involving the hydr­oxy groups and water mol­ecules, form R44(8) ring motifs, and link symmetry-related mol­ecules into extended chains along the c axis. The crystal structure is further stabilized by weak inter­molecular C—H⋯O hydrogen bonds, weak C—H⋯π and ππ stacking [centroid–centroid = 3.6495 (6)–3.7130 (6) Å] inter­actions. Intra­molecular O—H⋯O and O—H⋯N inter­actions are also present.

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis and bioactivity of benzimidazoles see, for example: Soto et al. (2006[Soto, S. E., Molina, R. V., Crespo, F. A., Galicia, J. V., Diaz, H. M., Piedra, M. T. & Vazquez, G. N. (2006). Life Sci. 79, 430-435.]); Vazquez et al. (2006[Vazquez, G. N., Diaz, H. M., Crespo, F. A., Rivera, I. L., Molina, R. V., Muniz, O. M. & Soto, S. E. (2006). Bioorg. Med. Chem. Lett. 16, 4169-4173.]); Latif et al. (1983[Latif, N., Mishriky, N. & F. M. Assad (1983). Recl Trav. Chim Pays-Bas, 102, 73-77.]). For related structures, see: Elerman & Kabak (1997[Elerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372-374.]); Liu et al. (2006[Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908-o5909.]); Al-Douh et al. (2006[Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954-o3956.], 2007[Al-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570-o3571.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O4·H2O

  • Mr = 394.42

  • Triclinic, [P \overline 1]

  • a = 7.5076 (1) Å

  • b = 9.8557 (1) Å

  • c = 13.2240 (2) Å

  • α = 106.306 (1)°

  • β = 97.135 (1)°

  • γ = 97.993 (1)°

  • V = 916.18 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.48 × 0.28 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.990

  • 33715 measured reflections

  • 8009 independent reflections

  • 6304 reflections with I > 2˘I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.133

  • S = 1.03

  • 8009 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.80 2.5447 (12) 147
O1W—H2W1⋯O1i 0.84 (2) 2.23 (2) 3.0151 (11) 155 (2)
O2—H2⋯O4 0.84 2.21 2.6650 (11) 114
O2—H2⋯O1Wii 0.84 1.95 2.7401 (11) 155
O1W—H1W1⋯O2iii 0.87 (2) 2.04 (2) 2.8987 (12) 168.5 (19)
C21—H21B⋯O1Wiv 0.98 2.58 3.2762 (16) 128
C22—H22A⋯O3v 0.98 2.54 3.2071 (14) 126
C22—H22BCg1vi 0.98 2.80 3.5497 (13) 133
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x, y, z-1; (v) x, y, z+1; (vi) -x+2, -y+2, -z+1. Cg1 is the centroid of the C15–C20 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Many benzimidazoles are pharmaceutical agents and are used widely in biological system applications which enable important synthetic strategies in drug discovery. Phenolic and anisolic benzimidazole derivatives have been synthesized and evaluated for vasodilator and antihypertensive activity (Soto et al., 2006), while other alkyloxyaryl benzimidazole derivatives have been tested for the spasmolytic activity (Vazquez et al., 2006). Latif et al. have developed the reactions of some phenolic aldehydes with o- phenylenediamine in great details and managed to isolate the title compound (Latif et al., 1983). In view of the above, we have obtained the title compound (I), derived from benzimidazole and a bis-Schiff base compound and have determined its crystsal structure herein.

The bond lengths and angles in (I) are consistent with those common to related reported structures (Elerman & Kabak, 1997; Liu et al., 2006). The molecular structure of (I) is shown in Fig. 1. Intramolecular O—H···O and O—H···N hydrogen bonds generate five and six membered rings with S(5) and S(6) ring motifs respectively (Bernstein et al., 1995). Intermolecular O—H···O hydrogen bonds, involving one of the hydroxy groups and one of the water molecules link neighbouring molecules into chains with R44(8) ring motifs (Bernstein et al., 1995). The dihedral angles between the benzimidazole ring system and the two outer benzene rings are 16.54 (4) and 86.13 (4)°. The dihedral angle between the two hydroxy substituted benzene rings is 82.20 (5)°. In the crystal structure the molecules are linked together by four-membered O—H···O—H···O—H interactions into 1-D extended chains along the c axis. The crystal structure is further stabilized by intermolecular C—H···O hydrogen bonds, weak intermolecular C—H···π (Table 1; Cg1 is the centroids of the C15–C20 benzene ring), and π-π interactions [Cg2···Cg2vii = 3.6495 (6) Å; Cg3 ···Cg4vii = 3.7130 (6) Å; Cg2, Cg3 and Cg4 are the centroids of the N1/C7/N2/C8/C13, C1–C6 and C8–C13 rings].

Related literature top

For hydrogen-bond motifs, see Bernstein et al. (1995). For the synthesis and bioactivity of benzimidazoles see, for example: Soto et al. (2006); Vazquez et al. (2006); Latif et al. (1983); Elerman & Kabak (1997); Liu et al. (2006); Al-Douh et al.(2006, 2007). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C15–C20 benzene ring.

Experimental top

The synthetic method has been described earlier (Al-Douh et al., 2006, 2007), while the single crystals suitable for X-ray diffraction were obtained by evaporation of a methanol solution of (I) at 353 K.

Refinement top

H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.82 Å. The water H-atoms were located from the difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically and refined with a riding model approximation with C—H = 0.95–0.98 and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular H bonds are drawn as a dashed line.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the a-axis showing 1-D extended chains along the c-axis. Intermolecular interactions are drawn as dashed lines.
2-[1-(2-Hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-6-methoxyphenol monohydrate top
Crystal data top
C22H20N2O4·H2OZ = 2
Mr = 394.42F(000) = 416
Triclinic, P1Dx = 1.430 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5076 (1) ÅCell parameters from 9908 reflections
b = 9.8557 (1) Åθ = 2.5–33.4°
c = 13.2240 (2) ŵ = 0.10 mm1
α = 106.306 (1)°T = 100 K
β = 97.135 (1)°Plate, colourless
γ = 97.993 (1)°0.48 × 0.28 × 0.10 mm
V = 916.18 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8009 independent reflections
Radiation source: fine-focus sealed tube6304 reflections with I > 2˘I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1012
Tmin = 0.952, Tmax = 0.990k = 1515
33715 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.2927P]
where P = (Fo2 + 2Fc2)/3
8009 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C22H20N2O4·H2Oγ = 97.993 (1)°
Mr = 394.42V = 916.18 (2) Å3
Triclinic, P1Z = 2
a = 7.5076 (1) ÅMo Kα radiation
b = 9.8557 (1) ŵ = 0.10 mm1
c = 13.2240 (2) ÅT = 100 K
α = 106.306 (1)°0.48 × 0.28 × 0.10 mm
β = 97.135 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8009 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6304 reflections with I > 2˘I)
Tmin = 0.952, Tmax = 0.990Rint = 0.030
33715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.58 e Å3
8009 reflectionsΔρmin = 0.33 e Å3
274 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70651 (10)0.86574 (8)0.22860 (6)0.01748 (14)
H10.74100.94520.18070.026*
O20.57454 (9)0.84985 (8)0.36393 (6)0.01561 (13)
H20.57920.84390.42630.023*
O30.65167 (12)0.60902 (8)0.35747 (6)0.02243 (16)
O40.83510 (10)0.78670 (9)0.48995 (6)0.01926 (15)
N10.78166 (11)1.04082 (9)0.04007 (7)0.01479 (14)
N20.68948 (10)0.98309 (9)0.09978 (6)0.01414 (14)
C10.68617 (12)0.75865 (10)0.18267 (7)0.01435 (16)
C20.65860 (13)0.61781 (11)0.25179 (8)0.01672 (17)
C30.63781 (14)0.50113 (11)0.21256 (9)0.01892 (18)
H3A0.61860.40590.25980.023*
C40.64553 (14)0.52522 (11)0.10278 (9)0.01897 (18)
H4A0.63260.44570.07530.023*
C50.67176 (13)0.66317 (11)0.03354 (8)0.01655 (17)
H5A0.67770.67740.04100.020*
C60.68979 (12)0.78324 (10)0.07211 (7)0.01388 (15)
C70.71903 (12)0.93282 (10)0.00369 (7)0.01363 (15)
C80.74228 (12)1.13195 (10)0.13166 (8)0.01435 (15)
C90.74225 (13)1.23678 (11)0.22774 (8)0.01755 (17)
H9A0.70341.21260.28720.021*
C100.80202 (14)1.37822 (12)0.23185 (9)0.02025 (18)
H10A0.80381.45290.29580.024*
C110.86028 (14)1.41416 (11)0.14373 (9)0.02055 (19)
H11A0.90111.51220.14980.025*
C120.85915 (13)1.30930 (11)0.04864 (8)0.01792 (17)
H12A0.89821.33350.01070.022*
C130.79834 (12)1.16605 (10)0.04318 (8)0.01454 (16)
C140.62110 (12)0.90630 (11)0.17087 (7)0.01496 (16)
H14A0.53630.81690.12750.018*
H14B0.55150.96670.21830.018*
C150.77308 (12)0.86831 (10)0.23893 (7)0.01369 (15)
C160.74231 (12)0.84165 (10)0.33383 (7)0.01303 (15)
C170.88347 (12)0.81141 (10)0.39986 (7)0.01459 (16)
C181.05599 (13)0.81031 (11)0.37185 (8)0.01720 (17)
H18A1.15240.79250.41730.021*
C191.08576 (13)0.83566 (11)0.27609 (8)0.01798 (17)
H19A1.20260.83360.25580.022*
C200.94569 (12)0.86386 (11)0.21028 (8)0.01622 (17)
H20A0.96750.88030.14510.019*
C210.6815 (2)0.47733 (14)0.42586 (10)0.0353 (3)
H21A0.69580.48840.49590.053*
H21B0.57680.40120.43440.053*
H21C0.79230.45170.39440.053*
C220.97989 (14)0.78394 (12)0.57027 (8)0.02013 (19)
H22A0.93130.78070.63520.030*
H22B1.07330.87060.58660.030*
H22C1.03420.69860.54410.030*
O1W0.50926 (11)0.14161 (9)0.43879 (6)0.02107 (15)
H2W10.433 (3)0.158 (2)0.3932 (17)0.055 (6)*
H1W10.515 (3)0.052 (2)0.4097 (15)0.043 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (3)0.0151 (3)0.0131 (3)0.0034 (3)0.0034 (2)0.0061 (2)
O20.0147 (3)0.0218 (3)0.0125 (3)0.0045 (2)0.0046 (2)0.0073 (3)
O30.0351 (4)0.0180 (3)0.0133 (3)0.0056 (3)0.0046 (3)0.0028 (3)
O40.0175 (3)0.0300 (4)0.0152 (3)0.0056 (3)0.0030 (2)0.0138 (3)
N10.0164 (3)0.0157 (4)0.0143 (3)0.0041 (3)0.0039 (3)0.0066 (3)
N20.0152 (3)0.0165 (4)0.0123 (3)0.0033 (3)0.0033 (2)0.0063 (3)
C10.0154 (3)0.0157 (4)0.0138 (4)0.0040 (3)0.0030 (3)0.0066 (3)
C20.0196 (4)0.0177 (4)0.0135 (4)0.0047 (3)0.0033 (3)0.0048 (3)
C30.0217 (4)0.0151 (4)0.0195 (5)0.0035 (3)0.0029 (3)0.0046 (3)
C40.0207 (4)0.0164 (4)0.0219 (5)0.0033 (3)0.0032 (3)0.0095 (4)
C50.0178 (4)0.0183 (4)0.0158 (4)0.0036 (3)0.0033 (3)0.0085 (3)
C60.0138 (3)0.0156 (4)0.0134 (4)0.0035 (3)0.0025 (3)0.0058 (3)
C70.0139 (3)0.0161 (4)0.0121 (4)0.0038 (3)0.0024 (3)0.0056 (3)
C80.0138 (3)0.0169 (4)0.0134 (4)0.0039 (3)0.0018 (3)0.0058 (3)
C90.0168 (4)0.0212 (4)0.0139 (4)0.0047 (3)0.0017 (3)0.0039 (3)
C100.0207 (4)0.0197 (5)0.0184 (4)0.0051 (3)0.0018 (3)0.0025 (4)
C110.0217 (4)0.0168 (4)0.0226 (5)0.0042 (3)0.0024 (3)0.0053 (4)
C120.0189 (4)0.0170 (4)0.0196 (4)0.0040 (3)0.0039 (3)0.0078 (3)
C130.0145 (3)0.0165 (4)0.0139 (4)0.0039 (3)0.0026 (3)0.0062 (3)
C140.0142 (3)0.0203 (4)0.0131 (4)0.0037 (3)0.0035 (3)0.0086 (3)
C150.0139 (3)0.0165 (4)0.0117 (4)0.0034 (3)0.0026 (3)0.0054 (3)
C160.0129 (3)0.0150 (4)0.0115 (4)0.0026 (3)0.0026 (3)0.0043 (3)
C170.0158 (3)0.0165 (4)0.0128 (4)0.0030 (3)0.0021 (3)0.0067 (3)
C180.0153 (4)0.0206 (4)0.0182 (4)0.0048 (3)0.0022 (3)0.0095 (4)
C190.0144 (4)0.0230 (5)0.0195 (4)0.0053 (3)0.0044 (3)0.0097 (4)
C200.0148 (3)0.0214 (4)0.0148 (4)0.0045 (3)0.0045 (3)0.0078 (3)
C210.0633 (9)0.0230 (6)0.0184 (5)0.0126 (6)0.0104 (5)0.0008 (4)
C220.0206 (4)0.0265 (5)0.0146 (4)0.0048 (3)0.0004 (3)0.0095 (4)
O1W0.0267 (4)0.0235 (4)0.0158 (3)0.0093 (3)0.0049 (3)0.0076 (3)
Geometric parameters (Å, º) top
O1—C11.3581 (11)C10—C111.4107 (16)
O1—H10.8400C10—H10A0.9500
O2—C161.3734 (11)C11—C121.3837 (15)
O2—H20.8400C11—H11A0.9500
O3—C21.3697 (12)C12—C131.4008 (14)
O3—C211.4229 (14)C12—H12A0.9500
O4—C171.3624 (11)C14—C151.5183 (12)
O4—C221.4312 (12)C14—H14A0.9900
N1—C71.3379 (12)C14—H14B0.9900
N1—C131.3824 (13)C15—C161.3920 (13)
N2—C71.3757 (12)C15—C201.3976 (12)
N2—C81.3917 (12)C16—C171.4066 (12)
N2—C141.4599 (12)C17—C181.3913 (13)
C1—C21.4021 (14)C18—C191.3959 (14)
C1—C61.4094 (13)C18—H18A0.9500
C2—C31.3860 (14)C19—C201.3893 (13)
C3—C41.3961 (15)C19—H19A0.9500
C3—H3A0.9500C20—H20A0.9500
C4—C51.3810 (15)C21—H21A0.9800
C4—H4A0.9500C21—H21B0.9800
C5—C61.4108 (13)C21—H21C0.9800
C5—H5A0.9500C22—H22A0.9800
C6—C71.4669 (13)C22—H22B0.9800
C8—C91.3945 (14)C22—H22C0.9800
C8—C131.4010 (13)O1W—H2W10.84 (2)
C9—C101.3874 (15)O1W—H1W10.87 (2)
C9—H9A0.9500
C1—O1—H1109.5C11—C12—H12A121.2
C16—O2—H2109.5C13—C12—H12A121.2
C2—O3—C21116.18 (9)N1—C13—C12130.25 (9)
C17—O4—C22116.88 (8)N1—C13—C8109.19 (8)
C7—N1—C13106.48 (8)C12—C13—C8120.56 (9)
C7—N2—C8106.87 (8)N2—C14—C15112.59 (7)
C7—N2—C14130.73 (8)N2—C14—H14A109.1
C8—N2—C14122.38 (8)C15—C14—H14A109.1
O1—C1—C2116.37 (8)N2—C14—H14B109.1
O1—C1—C6123.45 (9)C15—C14—H14B109.1
C2—C1—C6120.18 (8)H14A—C14—H14B107.8
O3—C2—C3125.03 (9)C16—C15—C20118.99 (8)
O3—C2—C1114.20 (8)C16—C15—C14119.49 (8)
C3—C2—C1120.76 (9)C20—C15—C14121.49 (8)
C2—C3—C4119.20 (9)O2—C16—C15119.26 (8)
C2—C3—H3A120.4O2—C16—C17120.41 (8)
C4—C3—H3A120.4C15—C16—C17120.29 (8)
C5—C4—C3120.85 (9)O4—C17—C18125.31 (8)
C5—C4—H4A119.6O4—C17—C16114.37 (8)
C3—C4—H4A119.6C18—C17—C16120.31 (8)
C4—C5—C6120.82 (9)C17—C18—C19119.19 (8)
C4—C5—H5A119.6C17—C18—H18A120.4
C6—C5—H5A119.6C19—C18—H18A120.4
C1—C6—C5118.16 (9)C20—C19—C18120.45 (9)
C1—C6—C7117.77 (8)C20—C19—H19A119.8
C5—C6—C7124.03 (8)C18—C19—H19A119.8
N1—C7—N2111.35 (8)C19—C20—C15120.73 (9)
N1—C7—C6120.54 (8)C19—C20—H20A119.6
N2—C7—C6128.11 (8)C15—C20—H20A119.6
N2—C8—C9131.51 (9)O3—C21—H21A109.5
N2—C8—C13106.08 (8)O3—C21—H21B109.5
C9—C8—C13122.40 (9)H21A—C21—H21B109.5
C10—C9—C8116.42 (9)O3—C21—H21C109.5
C10—C9—H9A121.8H21A—C21—H21C109.5
C8—C9—H9A121.8H21B—C21—H21C109.5
C9—C10—C11121.84 (10)O4—C22—H22A109.5
C9—C10—H10A119.1O4—C22—H22B109.5
C11—C10—H10A119.1H22A—C22—H22B109.5
C12—C11—C10121.25 (10)O4—C22—H22C109.5
C12—C11—H11A119.4H22A—C22—H22C109.5
C10—C11—H11A119.4H22B—C22—H22C109.5
C11—C12—C13117.52 (9)H2W1—O1W—H1W1103.0 (18)
C21—O3—C2—C320.13 (15)C8—C9—C10—C110.19 (14)
C21—O3—C2—C1160.96 (10)C9—C10—C11—C120.43 (16)
O1—C1—C2—O31.55 (12)C10—C11—C12—C130.13 (15)
C6—C1—C2—O3177.80 (8)C7—N1—C13—C12179.37 (10)
O1—C1—C2—C3179.48 (9)C7—N1—C13—C80.59 (10)
C6—C1—C2—C31.16 (14)C11—C12—C13—N1179.66 (9)
O3—C2—C3—C4179.16 (9)C11—C12—C13—C80.39 (14)
C1—C2—C3—C40.31 (15)N2—C8—C13—N10.56 (10)
C2—C3—C4—C50.61 (15)C9—C8—C13—N1179.40 (8)
C3—C4—C5—C60.58 (14)N2—C8—C13—C12179.47 (8)
O1—C1—C6—C5178.40 (8)C9—C8—C13—C120.64 (14)
C2—C1—C6—C52.28 (13)C7—N2—C14—C1591.13 (11)
O1—C1—C6—C70.65 (13)C8—N2—C14—C1587.41 (10)
C2—C1—C6—C7179.96 (8)N2—C14—C15—C16157.87 (9)
C4—C5—C6—C12.01 (13)N2—C14—C15—C2020.07 (13)
C4—C5—C6—C7179.61 (9)C20—C15—C16—O2178.18 (9)
C13—N1—C7—N21.57 (10)C14—C15—C16—O20.19 (13)
C13—N1—C7—C6178.56 (8)C20—C15—C16—C170.30 (14)
C8—N2—C7—N11.94 (10)C14—C15—C16—C17177.69 (9)
C14—N2—C7—N1179.36 (8)C22—O4—C17—C1811.29 (15)
C8—N2—C7—C6178.21 (8)C22—O4—C17—C16167.85 (9)
C14—N2—C7—C60.50 (15)O2—C16—C17—O42.44 (13)
C1—C6—C7—N115.16 (12)C15—C16—C17—O4179.70 (9)
C5—C6—C7—N1162.45 (9)O2—C16—C17—C18176.74 (9)
C1—C6—C7—N2164.69 (9)C15—C16—C17—C181.11 (15)
C5—C6—C7—N217.71 (14)O4—C17—C18—C19179.16 (10)
C7—N2—C8—C9179.84 (9)C16—C17—C18—C191.75 (15)
C14—N2—C8—C91.00 (15)C17—C18—C19—C200.99 (16)
C7—N2—C8—C131.47 (9)C18—C19—C20—C150.42 (16)
C14—N2—C8—C13179.69 (8)C16—C15—C20—C191.06 (15)
N2—C8—C9—C10178.84 (9)C14—C15—C20—C19176.89 (9)
C13—C8—C9—C100.33 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.802.5447 (12)147
O1W—H2W1···O1i0.84 (2)2.23 (2)3.0151 (11)155 (2)
O2—H2···O40.842.212.6650 (11)114
O2—H2···O1Wii0.841.952.7401 (11)155
O1W—H1W1···O2iii0.87 (2)2.04 (2)2.8987 (12)168.5 (19)
C21—H21B···O1Wiv0.982.583.2762 (16)128
C22—H22A···O3v0.982.543.2071 (14)126
C22—H22B···Cg1vi0.982.803.5497 (13)133
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z1; (v) x, y, z+1; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H20N2O4·H2O
Mr394.42
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5076 (1), 9.8557 (1), 13.2240 (2)
α, β, γ (°)106.306 (1), 97.135 (1), 97.993 (1)
V3)916.18 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.28 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.952, 0.990
No. of measured, independent and
observed [I > 2˘I)] reflections
33715, 8009, 6304
Rint0.030
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.133, 1.03
No. of reflections8009
No. of parameters274
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84001.80002.5447 (12)147.00
O1W—H2W1···O1i0.84 (2)2.23 (2)3.0151 (11)155 (2)
O2—H2···O40.84002.21002.6650 (11)114.00
O2—H2···O1Wii0.84001.95002.7401 (11)155.00
O1W—H1W1···O2iii0.87 (2)2.04 (2)2.8987 (12)168.5 (19)
C21—H21B···O1Wiv0.98002.58003.2762 (16)128.00
C22—H22A···O3v0.98002.54003.2071 (14)126.00
C22—H22B···Cg1vi0.982.803.5497 (13)133
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z1; (v) x, y, z+1; (vi) x+2, y+2, z+1.
 

Footnotes

Additional corresponding author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for an FRGS grant [304/PKIMIA/638122] to conduct this work. MHA-D thanks the Yemeni Government and Hadhramout University of Science and Technology (HUST) for financial scholarship support. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAl-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o3954–o3956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Douh, M. H., Hamid, S. A., Osman, H., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o3570–o3571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElerman, Y. & Kabak, M. (1997). Acta Cryst. C53, 372–374.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLatif, N., Mishriky, N. & F. M. Assad (1983). Recl Trav. Chim Pays-Bas, 102, 73–77.  Google Scholar
First citationLiu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5908–o5909.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoto, S. E., Molina, R. V., Crespo, F. A., Galicia, J. V., Diaz, H. M., Piedra, M. T. & Vazquez, G. N. (2006). Life Sci. 79, 430–435.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVazquez, G. N., Diaz, H. M., Crespo, F. A., Rivera, I. L., Molina, R. V., Muniz, O. M. & Soto, S. E. (2006). Bioorg. Med. Chem. Lett. 16, 4169–4173.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o913-o914
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds