metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[4,5-Di­bromo-o-phenyl­enebis(nitrilo­di­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}(methanol-κO)copper(II)

aDepartment of Biology, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: jianxin_xing@163.com

(Received 21 March 2009; accepted 26 March 2009; online 31 March 2009)

In the title compound, [Cu(C20H12Br2N2O2)(CH3OH)], the CuII ion, and the C, O and hydr­oxy H atoms of the coordinated methanol mol­ecule are located on a twofold rotation axis, while the methyl H atoms are disordered over two sites about the rotation axis. The CuII ion is coordinated by two N atoms [Cu—N = 1.960 (4) Å] and two O atoms [Cu—O = 1.908 (4) Å] from the tetra­dentate Schiff base ligand and by one O atom [Cu—O = 2.324 (6) Å] of the methanol molecule in a square-pyramidal geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link complex mol­ecules into extended chains along [001].

Related literature

For a related crystal structure, see Saha et al. (2007[Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563-571.]). For general background related to Schiff base compounds, see: Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Nayka et al. (2006[Nayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764-10773.]); Singh et al. (2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Yu et al. (2007[Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401-403.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C20H12Br2N2O2)(CH4O)]

  • Mr = 567.72

  • Orthorhombic, P n m a

  • a = 19.164 (4) Å

  • b = 19.416 (4) Å

  • c = 5.3287 (10) Å

  • V = 1982.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.16 mm−1

  • T = 273 K

  • 0.21 × 0.15 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.411, Tmax = 0.554 (expected range = 0.379–0.511)

  • 9881 measured reflections

  • 2004 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.06

  • 2004 reflections

  • 137 parameters

  • 242 restraints

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 2.30 3.009 (6) 145
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some may exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Nayka et al., 2006). Here, we report a new Cu(II) complex based on the tetradentate Schiff-base ligand 4,5-dibromo-1,2-diaminobenzene-N,N'-bis (salicylideneimine).

The molecular structure of the title compound is shown in Fig. 1. The CuII ion is pentacoordinated with the four basal sites occupied by two N atoms and two O atoms of the Schiff-base ligand, while the apical site is occupied by the O atom of the coordinated methanol molecule. The CuII ion is displaced towards the Cu—Omethanol bond from the plane formed by the two N atoms and two O atoms by 0.1017 Å,. The coordination geometry of the CuII ion is square-pyramidal. The Cu—N, Cu—O and Cu—Omethanol bond lengths are consistent with the corresponding distances in aqua-(N,N'-ethylenebis(3-methoxysalicylaldiminato)-N,N',O,O')copper(II) (Saha, et al., 2007).

Related literature top

For a related crystal structure, see Saha et al. (2007). For general background related to Schiff base compounds, see: Ghosh et al. (2006); Nayka et al. (2006); Singh et al. (2007); Yu et al. (2007).

Experimental top

The Schiff base ligand was synthesized by condensation of 4,5-dibromo-1,2-diaminobenzene and 2-hydroxy-benzaldehyde with the ratio 1:2 in ethanol. The synthesis of the title complex was carried out by reacting Cu(ClO4)2.6H2O, and the schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about 10 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 55%.

Refinement top

H atoms were included using the HFIX command in SHELXL-97 (Sheldrick, 2008), with C—H = 0.96 and 0.93 Å; O-H = 0.82Å and were allowed for as riding atoms with Uiso(H) = 1.5Ueq(Cmethyl) and (Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H-atoms are omitted for clarity. Unlabelled atoms are related by the symmetry operator (x, -y+3/2, z).
{2,2'-[4,5-Dibromo-o-phenylenebis(nitrilodimethylidyne)]diphenolato- κ4O,N,N',O'}(methanol-κO)copper(II) top
Crystal data top
[Cu(C20H12Br2N2O2)(CH4O)]F(000) = 1116
Mr = 567.72Dx = 1.902 Mg m3
Dm = 1.902 Mg m3
Dm measured by not measured
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1834 reflections
a = 19.164 (4) Åθ = 3.0–22.2°
b = 19.416 (4) ŵ = 5.16 mm1
c = 5.3287 (10) ÅT = 273 K
V = 1982.7 (6) Å3Block, red
Z = 40.21 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2004 independent reflections
Radiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2316
Tmin = 0.411, Tmax = 0.554k = 2323
9881 measured reflectionsl = 66
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0453P)2 + 5.5878P]
where P = (Fo2 + 2Fc2)/3
2004 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 1.23 e Å3
242 restraintsΔρmin = 1.82 e Å3
Crystal data top
[Cu(C20H12Br2N2O2)(CH4O)]V = 1982.7 (6) Å3
Mr = 567.72Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 19.164 (4) ŵ = 5.16 mm1
b = 19.416 (4) ÅT = 273 K
c = 5.3287 (10) Å0.21 × 0.15 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1517 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.554Rint = 0.046
9881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043242 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 1.23 e Å3
2004 reflectionsΔρmin = 1.82 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.12529 (5)0.75001.11061 (15)0.0314 (2)
Br10.10466 (3)0.66291 (3)0.15521 (10)0.0450 (2)
O10.1647 (2)0.68206 (19)1.3271 (6)0.0423 (9)
O20.2119 (3)0.75000.8053 (11)0.0547 (10)
H2A0.19900.75000.65870.066*
N10.0729 (2)0.6827 (2)0.9116 (7)0.0301 (9)
C10.0321 (3)0.7138 (3)0.7227 (9)0.0347 (9)
C20.0080 (3)0.6782 (3)0.5479 (9)0.0367 (9)
H20.00760.63040.54560.044*
C30.0485 (3)0.7142 (3)0.3777 (9)0.0327 (10)
C40.0738 (3)0.6172 (3)0.9476 (10)0.0394 (8)
H40.04720.59050.83910.047*
C50.1119 (3)0.5817 (3)1.1386 (9)0.0392 (8)
C60.1546 (3)0.6165 (3)1.3181 (9)0.0397 (9)
C70.1889 (3)0.5735 (3)1.4984 (10)0.0416 (9)
H70.21770.59361.61820.050*
C80.1056 (3)0.5104 (3)1.1487 (10)0.0425 (9)
H80.07720.48891.03080.051*
C90.1388 (3)0.4700 (3)1.3222 (10)0.0441 (10)
H90.13390.42241.32260.053*
C100.1804 (3)0.5040 (3)1.4990 (11)0.0433 (10)
H100.20300.47791.62070.052*
C110.2775 (5)0.75000.8417 (18)0.067 (2)
H11A0.30030.72740.70400.101*0.50
H11B0.28780.72600.99470.101*0.50
H11C0.29380.79660.85390.101*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0344 (5)0.0327 (5)0.0269 (4)0.0000.0054 (4)0.000
Br10.0519 (4)0.0464 (4)0.0369 (3)0.0063 (3)0.0153 (2)0.0044 (2)
O10.053 (2)0.039 (2)0.036 (2)0.0042 (18)0.0152 (17)0.0006 (16)
O20.048 (2)0.076 (2)0.040 (2)0.0000.0030 (18)0.000
N10.031 (2)0.032 (2)0.027 (2)0.0034 (18)0.0029 (17)0.0005 (18)
C10.0348 (17)0.0422 (17)0.0272 (16)0.0003 (15)0.0009 (15)0.0008 (15)
C20.0377 (19)0.042 (2)0.0308 (18)0.0010 (17)0.0037 (17)0.0007 (17)
C30.033 (2)0.040 (2)0.0252 (19)0.0030 (18)0.0033 (17)0.0008 (18)
C40.0398 (16)0.0449 (17)0.0336 (16)0.0007 (15)0.0047 (14)0.0008 (14)
C50.0406 (17)0.0443 (17)0.0327 (16)0.0021 (15)0.0034 (15)0.0009 (15)
C60.0397 (17)0.0469 (18)0.0326 (16)0.0026 (16)0.0015 (15)0.0020 (15)
C70.0446 (19)0.0446 (19)0.0355 (18)0.0035 (18)0.0059 (17)0.0017 (17)
C80.0452 (18)0.0444 (18)0.0380 (18)0.0005 (17)0.0052 (16)0.0017 (16)
C90.048 (2)0.044 (2)0.0400 (19)0.0020 (18)0.0039 (17)0.0039 (17)
C100.047 (2)0.0451 (19)0.0381 (19)0.0044 (18)0.0044 (17)0.0055 (17)
C110.052 (4)0.090 (4)0.060 (4)0.0000.002 (4)0.000
Geometric parameters (Å, º) top
Cu1—O1i1.908 (4)C4—C51.430 (7)
Cu1—O11.908 (3)C4—H40.9300
Cu1—N1i1.960 (4)C5—C81.390 (8)
Cu1—N11.960 (4)C5—C61.429 (7)
Cu1—O22.324 (6)C6—C71.432 (7)
Br1—C31.886 (5)C7—C101.358 (8)
O1—C61.289 (7)C7—H70.9300
O2—C111.271 (9)C8—C91.368 (7)
O2—H2A0.8199C8—H80.9300
N1—C41.285 (7)C9—C101.399 (8)
N1—C11.410 (6)C9—H90.9300
C1—C21.392 (7)C10—H100.9300
C1—C1i1.405 (10)C11—H11A0.9600
C2—C31.383 (7)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C3i1.388 (10)
O1i—Cu1—O187.5 (2)N1—C4—H4116.9
O1i—Cu1—N1i93.95 (16)C5—C4—H4116.9
O1—Cu1—N1i172.22 (18)C8—C5—C6119.6 (5)
O1i—Cu1—N1172.22 (18)C8—C5—C4117.7 (5)
O1—Cu1—N193.95 (16)C6—C5—C4122.7 (5)
N1i—Cu1—N183.6 (2)O1—C6—C5125.3 (5)
O1i—Cu1—O298.09 (16)O1—C6—C7118.9 (5)
O1—Cu1—O298.09 (16)C5—C6—C7115.9 (5)
N1i—Cu1—O289.29 (16)C10—C7—C6121.7 (5)
N1—Cu1—O289.29 (16)C10—C7—H7119.1
C6—O1—Cu1127.0 (3)C6—C7—H7119.1
C11—O2—Cu1126.8 (6)C9—C8—C5123.8 (5)
C11—O2—H2A116.4C9—C8—H8118.1
Cu1—O2—H2A116.8C5—C8—H8118.1
C4—N1—C1122.6 (4)C8—C9—C10116.7 (6)
C4—N1—Cu1124.8 (3)C8—C9—H9121.6
C1—N1—Cu1112.6 (3)C10—C9—H9121.6
C2—C1—C1i119.8 (3)C7—C10—C9122.3 (5)
C2—C1—N1124.8 (5)C7—C10—H10119.2
C1i—C1—N1115.4 (3)C9—C10—H10118.5
C3—C2—C1119.9 (5)O2—C11—H11A109.5
C3—C2—H2120.1O2—C11—H11B109.5
C1—C2—H2120.1H11A—C11—H11B109.5
C2—C3—C3i120.3 (3)O2—C11—H11C109.5
C2—C3—Br1117.7 (4)H11A—C11—H11C109.5
C3i—C3—Br1121.90 (15)H11B—C11—H11C109.5
N1—C4—C5126.3 (5)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1ii0.822.303.009 (6)145
Symmetry code: (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(C20H12Br2N2O2)(CH4O)]
Mr567.72
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)273
a, b, c (Å)19.164 (4), 19.416 (4), 5.3287 (10)
V3)1982.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.16
Crystal size (mm)0.21 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.411, 0.554
No. of measured, independent and
observed [I > 2σ(I)] reflections
9881, 2004, 1517
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.06
No. of reflections2004
No. of parameters137
No. of restraints242
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 1.82

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.303.009 (6)144.9
Symmetry code: (i) x, y, z1.
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayka, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764–10773.  Web of Science PubMed Google Scholar
First citationSaha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds