organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o867-o868

1-(2-Fluoro­phen­yl)-6,7-di­meth­oxy­isochroman

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 11 February 2009; accepted 13 March 2009; online 25 March 2009)

In the title compound, C17H17FO3, the benzene ring of the isochroman unit is inclined at 84.96 (7)° to the fluoro­benzene ring plane, and the pyran ring adopts a half-boat conformation. In the crystal structure, C—H⋯O hydrogen bonds link mol­ecules into rows along the c axis, while C—H⋯O inter­actions and C—H⋯F hydrogen bonds to the fluorine acceptor stack the mol­ecules down the b axis. In addition, the crystal structure exhibits a weak C—H⋯π inter­action between a methyl H atom of the meth­oxy group and the dimethoxy­benzene ring of an adjacent mol­ecule.

Related literature

For details of naturally occurring isochromans, see: Imamura et al. (2000[Imamura, N., Ishikawa, T., Ohtsuka, T., Yamamoto, K., Dekura, M., Fukami, H. & Nishida, R. (2000). Biosci. Biotechnol. Biochem. 64, 2216-2217.]); Ogawa et al. (2004[Ogawa, A., Murakami, C., Kamisuki, S., Kuriyama, I., Yoshida, H., Sugawara, F. & Mizushina, Y. (2004). Bioorg. Med. Chem. Lett. 14, 3539-3543.]); Peng et al. (1999[Peng, J., Lu, F. & Ralph, J. (1999). Phytochemistry, 50, 659-666.]); Kunesch et al. (1987[Kunesch, G., Zagatti, P., Pouverau, A. & Cassini, R. (1987). Z. Naturforsch. 42, 657-659.]). For the biological activity of isochromans, see: Zhang et al. (2008[Zhang, L., Zhu, X., Zhao, B., Zhao, J., Zhang, Y., Zhang, S. L. & Miao, J. Y. (2008). Vasc. Pharmacol. 48, 63-69.]); Lorenz et al. (2005[Lorenz, P., Zeh, M., Lobenhoffer, J. M., Schmidt, H., Wolf, G. & Horn, T. F. W. (2005). Free Radic. Res. 39, 535-545.]); Togna et al. (2003[Togna, G. I., Togna, A. R., Franconi, M., Marra, C. & Guiso, M. (2003). J. Nutr. 133, 2532-2536.]); Bianchi et al. (2004[Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food. Chem. 52, 1923-1927.]); Cutler et al. (1997[Cutler, H. G., Majetich, G., Tian, X. & Spearing, P. (1997). J. Agric. Food Chem. 45, 1422-1429.]); Liu et al. (2005[Liu, J., Birzin, E. T., Chan, W., Yang, Y. T., Pai, L. Y., DaSilva, C., Hayes, E. C., Mosley, R. T., DiNinno, F., Rohrer, S. P., Schaeer, J. M. & Hammonda, M. L. (2005). Bioorg. Med. Chem. Lett. 15, 715-718.]); TenBrink et al. (1996[TenBrink, R. E., Bergh, C. L., Duncan, J. N., Harris, D. W., Huff, R. M., Lahti, R. A., Lawson, C. F., Lutzke, B. S., Martin, I. J., Rees, S. A., Schlachter, S. K., Sihr, J. C. & Smith, M. W. (1996). J. Med. Chem. 39, 2435-2437.]); Frater et al. (1999[Frater, G., Muller, U. & Kraft, P. (1999). Helv. Chim. Acta, 82, 1656-1665.]); Dobson & Humber (1975[Dobson, T. A. & Humber, L. G. (1975). J. Heterocycl. Chem. 12, 591-594.]); Yamato et al. (1985[Yamato, M., Hashigaki, K., Ishikawa, S., Kokubu, N., Inoue, Y., Tsuruo, T. & Tashirot, T. (1985). J. Med. Chem. 28, 1026-1031.]); McCall et al. (1982[McCall, J. M., McCall, R. B., TenBrink, R. E., Kamdar, B. V., Humphrey, S. J., Sethy, V. H., Harris, D. W. & Daenzar, C. J. (1982). J. Med. Chem. 25, 75-81.]). For the synthesis of isochromans, see: Guiso et al. (2001[Guiso, M., Marra, C. & Cavarischia, C. (2001). Tetrahedron Lett. 42, 6531-6534.]). For related structures, see: Saeed & Flörke (2006a[Saeed, A. & Flörke, U. (2006a). Acta Cryst. E62, o1598-o1600.],b[Saeed, A. & Flörke, U. (2006b). Acta Cryst. E62, o1819-o1821.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); and for reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17FO3

  • Mr = 288.31

  • Monoclinic, P 21 /c

  • a = 15.730 (2) Å

  • b = 5.2328 (8) Å

  • c = 16.477 (2) Å

  • β = 93.108 (8)°

  • V = 1354.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 89 K

  • 0.29 × 0.22 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.789, Tmax = 0.986

  • 13466 measured reflections

  • 2371 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.261

  • S = 1.28

  • 2371 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.99 2.59 3.360 (5) 134
C7—H7⋯F1ii 0.95 2.45 3.360 (4) 160
C17—H17B⋯O1iii 0.98 2.49 3.430 (4) 160
C17—H17ACgii 0.98 2.70 3.557 (3) 146
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]. Cg2 is the centroid of the C3–C8 benzene ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Isochroman is a common structural motif found in many natural products. For example 1,6,8-trihydroxy-3-heptyl-7-carboxyisochroman, is an antibiotic and topoisomerase II inhibitor from Penicillum sp. (Imamura et al., 2000), pseudodeflectusin is a selective human cancer cytotoxin from Aspergillus pseudodeflectus, (Ogawa et al., 2004), in softwood lignin (Peng et al., 1999) and in the male wing gland pheromone of Aphomia sociella (Kunesch et al., 1987). A novel isochroman derivative inhibited apoptosis in vascular endothelial cells by depressing the levels of integrin 4, p53 and ROS (Zhang et al., 2008). 1-Phenyl- and 1-(3-methoxy-4-hydroxy)phenyl-6,7-dihydroxyisochromans identified in extra-virgin olive oil exhibit beneficial antioxidant effects (Lorenz et al., 2005) and antiplatelet activity (Togna et al., 2003). Isochroman derivatives also show plant-growth regulatory and herbicidal activities (Bianchi et al., 2004; Cutler et al., 1997), these are oestrogen receptors (Liu et al., 2005), dopamine receptor ligands (TenBrink et al., 1996), and fragrances, such as galaxolide (Frater et al., 1999). 1-Aryl-6,7-dimethoxyisochromans are known to demonstrate analgesic, muscle relaxant, antidepressant, antiinflammatory, antihistaminic and anticoagulant activity and are adrenergic antagonists (Dobson & Humber 1975; Yamato et al., 1985; McCall et al., 1982). The title dimethoxyisochroman derivative (I), Fig. 1, was prepared by the oxa-Pictet–Spengler reaction for the preparation of isochromans (Guiso et al., 2001) using 2-(3,4-dimethoxyphenyl)ethanol and 2-fluorobenzaldehyde.

The pyran ring of (I) adopts a half-boat conformation (Cremer & Pople, 1975) with the O1 atom 0.639 (3) Å from the least-squares plane through atoms C1–C3, C8, C9. The r.m.s. deviation from this plane was 0.083 Å. The benzene ring of the isochroman unit is inclined at 84.96 (7) ° to the fluorobenzene ring plane. Both the C and O atoms of the two methoxy substituents lie close to the aromatic ring plane (maximum deviation 0.310 (5) Å for C16).

In the molecular packing (Fig. 2), C17—H17B···O1 hydrogen bonds link the molecules into rows along the c axis (Fig. 2 and Table 1; symmetry codes as in Fig. 2). The F1 atom acts as an acceptor in a C7—H7···F1 hydrogen bond that, together with C1—H1B···O2 interactions, stacks molecules from individual rows down the the b axis (Fig. 2, Fig 3 and Table 1; symmetry codes as in Fig. 2). Additionally, a weak C—H···π interaction in the structure was observed between a methyl H atom of the methoxy group and the dimethoxybenzene ring of an adjacent molecule, with a C17—H17A···Cgi separation of 2.70 Å (Table 1 and Fig. 2; Cg is the centroid of the C3–C8 benzene ring, symmetry codes as in Fig. 2).)

Related literature top

For details of naturally occurring isochromans, see: Imamura et al. (2000); Ogawa et al. (2004); Peng et al. (1999); Kunesch et al. (1987). For the biological activity of isochromans, see: Zhang et al. (2008); Lorenz et al. (2005); Togna et al. (2003); Bianchi et al. (2004); Cutler et al. (1997); Liu et al. (2005); TenBrink et al. (1996); Frater et al. (1999); Dobson & Humber (1975); Yamato et al. (1985); McCall et al. (1982). For the synthesis of isochromans, see: Guiso et al. (2001). For related structures see: Saeed & Flörke (2006a,b). For ring puckering analysis, see: Cremer & Pople (1975); and for reference structural data, see: Allen et al. (1987).

Experimental top

A homogenized mixture of 2-(3,4-dimethoxyphenyl)ethanol (0.18g, 1 mmol) and 4-fluorobenzaldehyde (0.12g 1 mmol) and a catalytic amount of p-toluenesulfonic acid monohydrate was irradiated for 1.3 min. The product was purified by thin layer chromatography using petroleum ether and ethyl acetate (7:2 v:v) to afford the title compound (0.91 mmol, 91%) which was recrystallized from ethyl acetate. Analysis calculated for C17H17O3F: C, 70.82%, H, 5.94% found, 70.69%, H, 5.97%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 1.00 Å, Uiso = 1.2Ueq (C) for CH, 0.99 Å, Uiso = 1.2Ueq (C) for CH2 and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 hydrogen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···F, C—H···O (dashed lines) and C—H···π interactions (dotted lines) in the title compound. The yellow spheres denote the ring centroids [symmetry codes: (i) x, 1.5-y,-1/2+z; (ii) x, 1+y,z; (iii) x, 1.5-y, 1/2+z; (iv) x, 2.5-y, -1/2+z; (v) x, -1+y, z; (vi) x, 2.5-y, 1/2+z ].
[Figure 3] Fig. 3. Crystal packing for (I) viewed down the b axis with hydrogen bonds drawn as dashed lines and H atoms on atoms not involved in hydrogen bonding omitted.
1-(2-Fluorophenyl)-6,7-dimethoxyisochroman top
Crystal data top
C17H17FO3F(000) = 608
Mr = 288.31Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3061 reflections
a = 15.730 (2) Åθ = 2.5–28.7°
b = 5.2328 (8) ŵ = 0.11 mm1
c = 16.477 (2) ÅT = 89 K
β = 93.108 (8)°Irregular fragment, colourless
V = 1354.3 (3) Å30.29 × 0.22 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2371 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.6°
ω' scansh = 1718
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 65
Tmin = 0.789, Tmax = 0.986l = 1919
13466 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.261 w = 1/[σ2(Fo2) + (0.1483P)2 + 0.6898P]
where P = (Fo2 + 2Fc2)/3
S = 1.28(Δ/σ)max < 0.001
2371 reflectionsΔρmax = 0.45 e Å3
193 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (8)
Crystal data top
C17H17FO3V = 1354.3 (3) Å3
Mr = 288.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.730 (2) ŵ = 0.11 mm1
b = 5.2328 (8) ÅT = 89 K
c = 16.477 (2) Å0.29 × 0.22 × 0.13 mm
β = 93.108 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1864 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.986Rint = 0.072
13466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.261H-atom parameters constrained
S = 1.28Δρmax = 0.45 e Å3
2371 reflectionsΔρmin = 0.37 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23025 (15)0.7414 (5)0.31621 (15)0.0181 (7)
C10.3182 (2)0.7001 (7)0.3030 (2)0.0203 (9)
H1A0.34250.85510.27870.024*
H1B0.32400.55680.26440.024*
C20.3667 (2)0.6388 (7)0.3826 (2)0.0177 (9)
H2A0.35240.46350.39990.021*
H2B0.42870.64550.37490.021*
C30.3445 (2)0.8270 (7)0.4478 (2)0.0151 (8)
C40.3972 (2)0.8448 (6)0.5191 (2)0.0149 (8)
H40.44580.73730.52570.018*
C50.3797 (2)1.0161 (6)0.5799 (2)0.0140 (8)
O20.42783 (15)1.0436 (5)0.65158 (15)0.0173 (7)
C160.4888 (2)0.8446 (7)0.6690 (2)0.0199 (9)
H16A0.46080.67790.66260.030*
H16B0.51240.86270.72500.030*
H16C0.53480.85710.63140.030*
C60.3085 (2)1.1783 (6)0.5699 (2)0.0143 (8)
O30.29623 (15)1.3416 (5)0.63316 (15)0.0167 (7)
C170.2271 (2)1.5183 (7)0.6224 (2)0.0167 (8)
H17A0.23531.62450.57450.025*
H17B0.22511.62750.67060.025*
H17C0.17341.42380.61480.025*
C70.2562 (2)1.1589 (6)0.4993 (2)0.0143 (8)
H70.20781.26650.49220.017*
C80.2740 (2)0.9841 (6)0.4389 (2)0.0143 (8)
C90.2186 (2)0.9759 (7)0.3601 (2)0.0154 (8)
H90.23681.11960.32500.019*
C100.1238 (2)1.0018 (6)0.3687 (2)0.0146 (8)
C110.0776 (2)0.8291 (6)0.4129 (2)0.0145 (8)
F10.12090 (13)0.6419 (4)0.45485 (12)0.0202 (6)
C120.0089 (2)0.8363 (6)0.4168 (2)0.0164 (8)
H120.03780.71400.44790.020*
C130.0540 (2)1.0280 (7)0.3740 (2)0.0185 (9)
H130.11421.03580.37500.022*
C140.0104 (2)1.2076 (7)0.3300 (2)0.0193 (9)
H140.04091.33940.30140.023*
C150.0770 (2)1.1947 (7)0.3276 (2)0.0162 (8)
H150.10611.31900.29750.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0232 (14)0.0159 (14)0.0156 (14)0.0003 (10)0.0048 (10)0.0068 (11)
C10.0219 (19)0.021 (2)0.018 (2)0.0006 (15)0.0063 (14)0.0041 (16)
C20.0219 (19)0.0131 (18)0.019 (2)0.0007 (14)0.0067 (14)0.0015 (15)
C30.0200 (18)0.0126 (18)0.0135 (19)0.0019 (13)0.0069 (13)0.0019 (14)
C40.0190 (18)0.0121 (18)0.0139 (19)0.0019 (13)0.0034 (13)0.0016 (14)
C50.0183 (18)0.0131 (17)0.0106 (18)0.0022 (13)0.0020 (13)0.0020 (14)
O20.0204 (13)0.0169 (13)0.0145 (14)0.0043 (10)0.0012 (9)0.0007 (11)
C160.0218 (19)0.0155 (19)0.022 (2)0.0026 (14)0.0017 (14)0.0030 (16)
C60.0232 (19)0.0093 (17)0.0111 (18)0.0017 (13)0.0061 (13)0.0018 (13)
O30.0233 (14)0.0151 (14)0.0116 (13)0.0065 (10)0.0012 (9)0.0042 (10)
C170.0215 (18)0.0127 (18)0.0159 (19)0.0030 (14)0.0013 (13)0.0051 (14)
C70.0188 (18)0.0094 (17)0.0148 (19)0.0014 (13)0.0023 (13)0.0026 (14)
C80.0222 (19)0.0108 (17)0.0104 (18)0.0027 (13)0.0047 (13)0.0012 (14)
C90.0247 (19)0.0114 (17)0.0105 (18)0.0005 (14)0.0040 (13)0.0022 (14)
C100.0238 (19)0.0103 (17)0.0096 (18)0.0011 (13)0.0004 (13)0.0041 (14)
C110.026 (2)0.0077 (17)0.0091 (18)0.0035 (13)0.0024 (13)0.0006 (13)
F10.0249 (12)0.0154 (12)0.0202 (12)0.0025 (8)0.0001 (8)0.0071 (9)
C120.029 (2)0.0109 (18)0.0099 (19)0.0009 (14)0.0029 (14)0.0023 (14)
C130.0215 (19)0.0170 (19)0.0169 (19)0.0021 (14)0.0009 (14)0.0038 (15)
C140.030 (2)0.0125 (18)0.0148 (19)0.0064 (14)0.0032 (14)0.0016 (15)
C150.031 (2)0.0090 (16)0.0085 (18)0.0008 (14)0.0011 (13)0.0015 (13)
Geometric parameters (Å, º) top
O1—C11.429 (4)O3—C171.432 (4)
O1—C91.441 (4)C17—H17A0.9800
C1—C21.516 (5)C17—H17B0.9800
C1—H1A0.9900C17—H17C0.9800
C1—H1B0.9900C7—C81.391 (5)
C2—C31.512 (5)C7—H70.9500
C2—H2A0.9900C8—C91.525 (5)
C2—H2B0.9900C9—C101.511 (5)
C3—C81.382 (5)C9—H91.0000
C3—C41.404 (5)C10—C111.391 (5)
C4—C51.384 (5)C10—C151.401 (5)
C4—H40.9500C11—F11.360 (4)
C5—O21.375 (4)C11—C121.367 (5)
C5—C61.408 (5)C12—C131.397 (5)
O2—C161.434 (4)C12—H120.9500
C16—H16A0.9800C13—C141.391 (6)
C16—H16B0.9800C13—H130.9500
C16—H16C0.9800C14—C151.379 (5)
C6—O31.370 (4)C14—H140.9500
C6—C71.391 (5)C15—H150.9500
C1—O1—C9110.9 (3)H17A—C17—H17B109.5
O1—C1—C2110.2 (3)O3—C17—H17C109.5
O1—C1—H1A109.6H17A—C17—H17C109.5
C2—C1—H1A109.6H17B—C17—H17C109.5
O1—C1—H1B109.6C6—C7—C8120.9 (3)
C2—C1—H1B109.6C6—C7—H7119.5
H1A—C1—H1B108.1C8—C7—H7119.5
C3—C2—C1110.6 (3)C3—C8—C7120.4 (3)
C3—C2—H2A109.5C3—C8—C9119.5 (3)
C1—C2—H2A109.5C7—C8—C9120.0 (3)
C3—C2—H2B109.5O1—C9—C10106.1 (3)
C1—C2—H2B109.5O1—C9—C8111.6 (3)
H2A—C2—H2B108.1C10—C9—C8116.0 (3)
C8—C3—C4118.9 (3)O1—C9—H9107.6
C8—C3—C2121.8 (3)C10—C9—H9107.6
C4—C3—C2119.3 (3)C8—C9—H9107.6
C5—C4—C3121.2 (3)C11—C10—C15116.5 (3)
C5—C4—H4119.4C11—C10—C9122.5 (3)
C3—C4—H4119.4C15—C10—C9120.9 (3)
O2—C5—C4124.6 (3)F1—C11—C12117.9 (3)
O2—C5—C6115.8 (3)F1—C11—C10118.2 (3)
C4—C5—C6119.6 (3)C12—C11—C10123.8 (3)
C5—O2—C16115.3 (3)C11—C12—C13118.4 (3)
O2—C16—H16A109.5C11—C12—H12120.8
O2—C16—H16B109.5C13—C12—H12120.8
H16A—C16—H16B109.5C14—C13—C12119.9 (3)
O2—C16—H16C109.5C14—C13—H13120.1
H16A—C16—H16C109.5C12—C13—H13120.1
H16B—C16—H16C109.5C15—C14—C13120.1 (3)
O3—C6—C7125.5 (3)C15—C14—H14119.9
O3—C6—C5115.5 (3)C13—C14—H14119.9
C7—C6—C5119.0 (3)C14—C15—C10121.3 (3)
C6—O3—C17116.5 (3)C14—C15—H15119.4
O3—C17—H17A109.5C10—C15—H15119.4
O3—C17—H17B109.5
C9—O1—C1—C269.6 (4)C6—C7—C8—C9176.7 (3)
O1—C1—C2—C347.7 (4)C1—O1—C9—C10178.8 (3)
C1—C2—C3—C815.5 (5)C1—O1—C9—C854.0 (4)
C1—C2—C3—C4164.0 (3)C3—C8—C9—O120.5 (4)
C8—C3—C4—C50.1 (5)C7—C8—C9—O1163.2 (3)
C2—C3—C4—C5179.4 (3)C3—C8—C9—C10142.2 (3)
C3—C4—C5—O2179.5 (3)C7—C8—C9—C1041.5 (4)
C3—C4—C5—C60.9 (5)O1—C9—C10—C1164.0 (4)
C4—C5—O2—C1613.0 (5)C8—C9—C10—C1160.5 (4)
C6—C5—O2—C16167.4 (3)O1—C9—C10—C15111.9 (3)
O2—C5—C6—O30.4 (4)C8—C9—C10—C15123.6 (3)
C4—C5—C6—O3179.9 (3)C15—C10—C11—F1178.8 (3)
O2—C5—C6—C7179.2 (3)C9—C10—C11—F15.1 (5)
C4—C5—C6—C71.2 (5)C15—C10—C11—C121.1 (5)
C7—C6—O3—C174.7 (5)C9—C10—C11—C12174.9 (3)
C5—C6—O3—C17176.6 (3)F1—C11—C12—C13179.9 (3)
O3—C6—C7—C8179.3 (3)C10—C11—C12—C130.0 (5)
C5—C6—C7—C80.6 (5)C11—C12—C13—C141.0 (5)
C4—C3—C8—C70.8 (5)C12—C13—C14—C150.8 (5)
C2—C3—C8—C7178.7 (3)C13—C14—C15—C100.3 (5)
C4—C3—C8—C9177.1 (3)C11—C10—C15—C141.3 (5)
C2—C3—C8—C92.4 (5)C9—C10—C15—C14174.8 (3)
C6—C7—C8—C30.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.593.360 (5)134
C7—H7···F1ii0.952.453.360 (4)160
C17—H17B···O1iii0.982.493.430 (4)160
C17—H17A···Cgii0.982.703.557 (3)146
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z; (iii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H17FO3
Mr288.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)15.730 (2), 5.2328 (8), 16.477 (2)
β (°) 93.108 (8)
V3)1354.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.22 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.789, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13466, 2371, 1864
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.261, 1.28
No. of reflections2371
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.37

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2i0.992.593.360 (5)134.1
C7—H7···F1ii0.952.453.360 (4)159.8
C17—H17B···O1iii0.982.493.430 (4)159.9
C17—H17A···Cgii0.982.703.557 (3)146.2
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1, z; (iii) x, y+5/2, z+1/2.
 

Acknowledgements

The authors thank the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food. Chem. 52, 1923–1927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCutler, H. G., Majetich, G., Tian, X. & Spearing, P. (1997). J. Agric. Food Chem. 45, 1422–1429.  CrossRef CAS Web of Science Google Scholar
First citationDobson, T. A. & Humber, L. G. (1975). J. Heterocycl. Chem. 12, 591–594.  CrossRef CAS Google Scholar
First citationFrater, G., Muller, U. & Kraft, P. (1999). Helv. Chim. Acta, 82, 1656–1665.  CrossRef CAS Google Scholar
First citationGuiso, M., Marra, C. & Cavarischia, C. (2001). Tetrahedron Lett. 42, 6531–6534.  Web of Science CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationImamura, N., Ishikawa, T., Ohtsuka, T., Yamamoto, K., Dekura, M., Fukami, H. & Nishida, R. (2000). Biosci. Biotechnol. Biochem. 64, 2216–2217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKunesch, G., Zagatti, P., Pouverau, A. & Cassini, R. (1987). Z. Naturforsch. 42, 657–659.  CAS Google Scholar
First citationLiu, J., Birzin, E. T., Chan, W., Yang, Y. T., Pai, L. Y., DaSilva, C., Hayes, E. C., Mosley, R. T., DiNinno, F., Rohrer, S. P., Schaeer, J. M. & Hammonda, M. L. (2005). Bioorg. Med. Chem. Lett. 15, 715–718.  Web of Science CrossRef PubMed Google Scholar
First citationLorenz, P., Zeh, M., Lobenhoffer, J. M., Schmidt, H., Wolf, G. & Horn, T. F. W. (2005). Free Radic. Res. 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCall, J. M., McCall, R. B., TenBrink, R. E., Kamdar, B. V., Humphrey, S. J., Sethy, V. H., Harris, D. W. & Daenzar, C. J. (1982). J. Med. Chem. 25, 75–81.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOgawa, A., Murakami, C., Kamisuki, S., Kuriyama, I., Yoshida, H., Sugawara, F. & Mizushina, Y. (2004). Bioorg. Med. Chem. Lett. 14, 3539–3543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, J., Lu, F. & Ralph, J. (1999). Phytochemistry, 50, 659–666.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, A. & Flörke, U. (2006a). Acta Cryst. E62, o1598–o1600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2006b). Acta Cryst. E62, o1819–o1821.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTenBrink, R. E., Bergh, C. L., Duncan, J. N., Harris, D. W., Huff, R. M., Lahti, R. A., Lawson, C. F., Lutzke, B. S., Martin, I. J., Rees, S. A., Schlachter, S. K., Sihr, J. C. & Smith, M. W. (1996). J. Med. Chem. 39, 2435–2437.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTogna, G. I., Togna, A. R., Franconi, M., Marra, C. & Guiso, M. (2003). J. Nutr. 133, 2532–2536.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYamato, M., Hashigaki, K., Ishikawa, S., Kokubu, N., Inoue, Y., Tsuruo, T. & Tashirot, T. (1985). J. Med. Chem. 28, 1026–1031.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, L., Zhu, X., Zhao, B., Zhao, J., Zhang, Y., Zhang, S. L. & Miao, J. Y. (2008). Vasc. Pharmacol. 48, 63–69.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o867-o868
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds