metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phyllo-poly[[μ2-1,4-bis­­(cyclo­hexyl­sulfanylmeth­yl)benzene-κ2S:S′](μ2-nitrato-κ2O:O′)silver(I)]

aDepartment of Chemistry, Gyeongsang National University, Jinju 660-701, Republic of Korea, bTest & Analytical Laboratory, Korea Food & Drug Administration, 123-7 Yongdang-dong, Busan 608-829, Republic of Korea, cResearch Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea, and dDepartment of Chemistry, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: jekim@gnu.ac.kr

(Received 15 February 2009; accepted 4 March 2009; online 11 March 2009)

The title compound, [Ag(NO3)(C20H30S2)]n, was synthesized by the reaction of silver nitrate and 1,4-bis­(cyclo­hexyl­thio­meth­yl)benzene (bctmb) in acetonitrile. The coordination polymer exhibits a two-dimensional layer structure. The layers are wave-like and parallel to the crystallographic ac plane; AgI ions are linked by the bctmb ligands and nitrate anions along the crystallographic a and c directions, respectively. In addition, the crystal structure is stabilized by C—H⋯O hydrogen bonds.

Related literature

For the synthesis of the ligand, see: Kim et al. (2008[Kim, T. H., Park, G., Shin, Y. W., Park, K.-M., Choi, M. Y. & Kim, J. (2008). Bull. Korean Chem. Soc. 29, 499-502.]). For related structures, see: Kim et al. (2007[Kim, T. H., Seo, J., Park, K.-M., Lee, S. S. & Kim, J. (2007). Inorg. Chem. Commun. 10, 313-317.]). For structures with Ni(II) in trigonal-pyramidal coordination, see: Cho et al. (2007[Cho, J., Yap, G. P. A. & Riordan, C. G. (2007). Inorg. Chem. 46, 11308-11315.]). For potential applications of coordination polymers, see: Young & Hanton (2008[Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346-1386.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C20H30S2)]

  • Mr = 504.44

  • Monoclinic, P 21 /c

  • a = 12.1053 (6) Å

  • b = 20.719 (1) Å

  • c = 8.5973 (4) Å

  • β = 92.256 (1)°

  • V = 2154.61 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.724, Tmax = 0.894

  • 13362 measured reflections

  • 4804 independent reflections

  • 3174 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.115

  • S = 1.04

  • 4804 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O3i 0.99 2.60 3.416 (7) 140
C14—H14B⋯O3ii 0.99 2.47 3.199 (6) 130
C7—H7B⋯O2iii 0.99 2.43 3.118 (6) 126
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker. (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker. (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

An increasing interest has been directed toward the study of new coordination polymers owing to potential applications (Young & Hanton, 2008). The scant research on the coordination polymers with dithioether ligands prompted us to investigate the possibility of diverse structures. Therefore, we designed and synthesized 1,4-bis(cyclohexylthiomethyl)benzene (bctmb) as a dithioether ligand. Synthesis of the bctmb ligand has been published previously (Kim, et al., 2008).

The title compound, phyllo-poly[(µ2-nitrato-κ2 O:O')(µ2-1,4-bis(cyclohexylthiomethyl)benzene- κ2 S:S') silver(I)], [Ag(NO3)(C20H30S2)]n was synthesized by self-assembly of silver nitrate and the bctmb ligand in acetonitrile (Kim et al., 2007) (Fig. 1). The coordination number of Ag is four and the Ag atom is a slightly distorted trigonal pyramidal geometry, in which an O atom (O2) from nitrate anion and two S atoms from two different bctmb ligands form a basal plane and an O atom (O1) from neighboring nitrate anion is occupied apical position. The Ag atom is slightly apart from this basal plane (0.123 (2) Å). Each AgI ions is linked by the bctmb ligands to form 1D chain along the a axis. These chains are connected by bidentate nitrate anions in a bridging mode to generate 2D layer structure, as shown in Fig. 2. The layers are wavy and parallel to the crystallographic ac plane. The packing structure is stabilized by C—H···O hydrogen bonds (Table 1 & Fig. 2).

Related literature top

For the synthesis of the ligand, see: Kim et al. (2008). For related structures, see: Kim et al. (2007). For distorted trigonal-pyramidal structures of Ni(II) complexes, see: Cho et al. (2007). For thepotential applications of coordination polymers, see: Young & Hanton (2008).

Experimental top

The title compound was synthesized by self-assembly of stoichiometric amounts of silver nitrate and the bctmb ligands in acetonitrile (Kim et al., 2007). Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of the title compound in acetonitrile.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso =1.2Ueq(C) for aromatic and 0.97 Å, Uiso = 1.2Ueq(C) for CH2 atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Two-dimensional network structure showing C—H···O interactions. All H atoms except those relating C—H···O interactions have been omitted for clarity. [Symmetry codes: (i) x-1, -y+1/2, z-1/2; (ii) x-1, y, z; (iii) x, -y+1/2, z-1/2.]
Phyllo-poly[[µ2-1,4-bis(cyclohexylsulfanylmethyl)benzene- κ2S:S'](µ2-nitrato-κ2O:O')silver(I)] top
Crystal data top
[Ag(NO3)(C20H30S2)]F(000) = 1040
Mr = 504.44Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4031 reflections
a = 12.1053 (6) Åθ = 2.6–27.6°
b = 20.719 (1) ŵ = 1.15 mm1
c = 8.5973 (4) ÅT = 173 K
β = 92.256 (1)°Plate, colorless
V = 2154.61 (18) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4804 independent reflections
Radiation source: fine-focus sealed tube3174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 27.3°, θmin = 1.7°
ϕ and ω scansh = 1215
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2623
Tmin = 0.724, Tmax = 0.894l = 119
13362 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.7474P]
where P = (Fo2 + 2Fc2)/3
4804 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Ag(NO3)(C20H30S2)]V = 2154.61 (18) Å3
Mr = 504.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1053 (6) ŵ = 1.15 mm1
b = 20.719 (1) ÅT = 173 K
c = 8.5973 (4) Å0.30 × 0.20 × 0.10 mm
β = 92.256 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4804 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3174 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.894Rint = 0.042
13362 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.90 e Å3
4804 reflectionsΔρmin = 1.00 e Å3
238 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.60132 (3)0.147912 (17)0.59553 (4)0.03340 (12)
S10.40490 (8)0.10911 (5)0.59796 (11)0.0245 (2)
S20.20353 (9)0.11318 (6)0.59401 (12)0.0332 (3)
O10.5747 (3)0.16475 (16)0.8814 (4)0.0538 (10)
O20.5492 (4)0.2420 (2)1.0367 (7)0.1033 (19)
O30.6861 (4)0.2458 (2)0.9036 (6)0.1007 (19)
N10.6032 (3)0.2176 (2)0.9376 (4)0.0391 (7)
C10.3798 (4)0.1476 (2)0.2840 (5)0.0330 (10)
H1A0.46080.15440.28670.040*
H1B0.34420.18860.31350.040*
C20.3396 (4)0.1280 (2)0.1194 (5)0.0371 (11)
H2A0.25790.12490.11540.044*
H2B0.36080.16180.04490.044*
C30.3879 (4)0.0640 (2)0.0714 (5)0.0381 (11)
H3A0.46910.06820.06580.046*
H3B0.35770.05220.03350.046*
C40.3611 (4)0.0111 (2)0.1862 (5)0.0376 (11)
H4A0.39760.02950.15610.045*
H4B0.28020.00360.18340.045*
C50.4004 (4)0.0300 (2)0.3512 (5)0.0318 (10)
H5A0.48210.03300.35640.038*
H5B0.37840.00400.42500.038*
C60.3511 (3)0.09466 (19)0.3992 (4)0.0236 (9)
H60.26880.09030.40040.028*
C70.3416 (3)0.1852 (2)0.6496 (5)0.0250 (9)
H7A0.37160.19860.75340.030*
H7B0.36290.21850.57370.030*
C80.2171 (3)0.1830 (2)0.6532 (4)0.0242 (9)
C90.1638 (4)0.1424 (2)0.7516 (5)0.0341 (10)
H90.20630.11340.81530.041*
C100.0497 (4)0.1424 (2)0.7606 (5)0.0346 (10)
H100.01500.11370.82970.041*
C110.0144 (3)0.1847 (2)0.6682 (5)0.0312 (10)
C120.0387 (4)0.2255 (2)0.5700 (5)0.0347 (11)
H120.00350.25470.50680.042*
C130.1531 (3)0.2248 (2)0.5610 (5)0.0303 (10)
H130.18780.25310.49130.036*
C140.1381 (3)0.1853 (2)0.6764 (5)0.0393 (12)
H14A0.16760.22370.62000.047*
H14B0.15790.18940.78670.047*
C150.1609 (4)0.1157 (2)0.3921 (5)0.0313 (10)
H150.13990.16110.36650.038*
C160.0612 (4)0.0726 (3)0.3729 (5)0.0459 (13)
H16A0.07930.02820.40580.055*
H16B0.00090.08840.44100.055*
C170.0258 (4)0.0716 (3)0.2038 (6)0.0602 (16)
H17A0.00050.11510.17370.072*
H17B0.03650.04110.19350.072*
C180.1225 (4)0.0509 (3)0.0960 (5)0.0504 (14)
H18A0.09990.05240.01330.060*
H18B0.14330.00590.12000.060*
C190.2211 (4)0.0948 (2)0.1153 (5)0.0391 (7)
H19A0.20180.13920.08380.047*
H19B0.28340.07980.04640.047*
C200.2563 (4)0.0952 (3)0.2821 (5)0.0435 (12)
H20A0.28150.05150.31100.052*
H20B0.31910.12530.29240.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01609 (16)0.0475 (2)0.0365 (2)0.00432 (16)0.00031 (12)0.00270 (17)
S10.0197 (5)0.0337 (6)0.0199 (5)0.0066 (4)0.0015 (4)0.0037 (4)
S20.0194 (5)0.0523 (7)0.0277 (6)0.0080 (5)0.0005 (4)0.0018 (5)
O10.083 (3)0.046 (2)0.0318 (19)0.010 (2)0.0063 (18)0.0079 (16)
O20.092 (3)0.066 (3)0.159 (5)0.026 (3)0.093 (4)0.053 (3)
O30.091 (4)0.072 (3)0.146 (5)0.035 (3)0.089 (3)0.039 (3)
N10.0396 (18)0.0507 (19)0.0266 (15)0.0039 (16)0.0033 (13)0.0020 (14)
C10.040 (3)0.031 (2)0.028 (2)0.009 (2)0.0021 (19)0.0002 (19)
C20.047 (3)0.040 (3)0.024 (2)0.008 (2)0.004 (2)0.0021 (19)
C30.040 (3)0.050 (3)0.024 (2)0.006 (2)0.0027 (19)0.002 (2)
C40.051 (3)0.039 (3)0.022 (2)0.004 (2)0.010 (2)0.0053 (19)
C50.037 (3)0.035 (2)0.023 (2)0.008 (2)0.0049 (18)0.0047 (18)
C60.0213 (19)0.035 (2)0.0139 (18)0.0029 (18)0.0040 (15)0.0016 (17)
C70.0176 (19)0.032 (2)0.026 (2)0.0067 (18)0.0010 (16)0.0058 (18)
C80.020 (2)0.035 (2)0.0176 (19)0.0045 (18)0.0006 (15)0.0057 (17)
C90.028 (2)0.054 (3)0.020 (2)0.005 (2)0.0042 (17)0.002 (2)
C100.025 (2)0.056 (3)0.022 (2)0.002 (2)0.0025 (17)0.003 (2)
C110.018 (2)0.053 (3)0.023 (2)0.006 (2)0.0013 (16)0.013 (2)
C120.028 (2)0.041 (3)0.034 (2)0.014 (2)0.0082 (19)0.003 (2)
C130.028 (2)0.036 (2)0.027 (2)0.007 (2)0.0044 (18)0.0048 (19)
C140.020 (2)0.059 (3)0.039 (3)0.008 (2)0.0005 (19)0.019 (2)
C150.027 (2)0.040 (3)0.028 (2)0.001 (2)0.0035 (18)0.0017 (19)
C160.036 (3)0.066 (4)0.036 (3)0.017 (3)0.001 (2)0.012 (2)
C170.041 (3)0.090 (4)0.050 (3)0.008 (3)0.021 (3)0.016 (3)
C180.061 (4)0.063 (3)0.028 (3)0.007 (3)0.011 (2)0.011 (2)
C190.0396 (18)0.0507 (19)0.0266 (15)0.0039 (16)0.0033 (13)0.0020 (14)
C200.031 (3)0.064 (3)0.035 (3)0.008 (2)0.004 (2)0.008 (2)
Geometric parameters (Å, º) top
Ag1—O2i2.415 (4)C7—H7B0.9900
Ag1—S2ii2.4699 (11)C8—C91.371 (6)
Ag1—S12.5108 (11)C8—C131.389 (5)
Ag1—O12.516 (3)C9—C101.387 (6)
S1—C71.816 (4)C9—H90.9500
S1—C61.829 (3)C10—C111.397 (6)
S2—C141.822 (5)C10—H100.9500
S2—C151.831 (4)C11—C121.372 (6)
S2—Ag1iii2.4699 (11)C11—C141.503 (5)
O1—N11.241 (5)C12—C131.390 (6)
O2—N11.205 (5)C12—H120.9500
O2—Ag1iv2.415 (4)C13—H130.9500
O3—N11.207 (5)C14—H14A0.9900
C1—C61.527 (6)C14—H14B0.9900
C1—C21.532 (6)C15—C161.515 (6)
C1—H1A0.9900C15—C201.524 (6)
C1—H1B0.9900C15—H151.0000
C2—C31.513 (6)C16—C171.532 (7)
C2—H2A0.9900C16—H16A0.9900
C2—H2B0.9900C16—H16B0.9900
C3—C41.519 (6)C17—C181.525 (7)
C3—H3A0.9900C17—H17A0.9900
C3—H3B0.9900C17—H17B0.9900
C4—C51.529 (5)C18—C191.515 (7)
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C5—C61.531 (6)C19—C201.512 (6)
C5—H5A0.9900C19—H19A0.9900
C5—H5B0.9900C19—H19B0.9900
C6—H61.0000C20—H20A0.9900
C7—C81.510 (5)C20—H20B0.9900
C7—H7A0.9900
O2i—Ag1—S2ii121.08 (12)C9—C8—C7121.7 (4)
O2i—Ag1—S193.69 (12)C13—C8—C7120.2 (4)
S2ii—Ag1—S1144.39 (4)C8—C9—C10121.8 (4)
O2i—Ag1—O191.78 (15)C8—C9—H9119.1
S2ii—Ag1—O1101.83 (10)C10—C9—H9119.1
S1—Ag1—O183.01 (9)C9—C10—C11120.0 (4)
C7—S1—C6103.42 (18)C9—C10—H10120.0
C7—S1—Ag197.63 (13)C11—C10—H10120.0
C6—S1—Ag1110.32 (14)C12—C11—C10118.3 (4)
C14—S2—C15102.2 (2)C12—C11—C14121.0 (4)
C14—S2—Ag1iii99.21 (14)C10—C11—C14120.7 (4)
C15—S2—Ag1iii107.56 (14)C11—C12—C13121.3 (4)
N1—O1—Ag1117.3 (3)C11—C12—H12119.4
N1—O2—Ag1iv113.5 (3)C13—C12—H12119.4
O2—N1—O3116.7 (4)C8—C13—C12120.6 (4)
O2—N1—O1119.6 (5)C8—C13—H13119.7
O3—N1—O1123.6 (5)C12—C13—H13119.7
C6—C1—C2109.7 (3)C11—C14—S2113.2 (3)
C6—C1—H1A109.7C11—C14—H14A108.9
C2—C1—H1A109.7S2—C14—H14A108.9
C6—C1—H1B109.7C11—C14—H14B108.9
C2—C1—H1B109.7S2—C14—H14B108.9
H1A—C1—H1B108.2H14A—C14—H14B107.8
C3—C2—C1111.8 (3)C16—C15—C20110.8 (4)
C3—C2—H2A109.3C16—C15—S2109.9 (3)
C1—C2—H2A109.3C20—C15—S2110.2 (3)
C3—C2—H2B109.3C16—C15—H15108.6
C1—C2—H2B109.3C20—C15—H15108.6
H2A—C2—H2B107.9S2—C15—H15108.6
C2—C3—C4111.1 (4)C15—C16—C17111.4 (4)
C2—C3—H3A109.4C15—C16—H16A109.3
C4—C3—H3A109.4C17—C16—H16A109.3
C2—C3—H3B109.4C15—C16—H16B109.3
C4—C3—H3B109.4C17—C16—H16B109.3
H3A—C3—H3B108.0H16A—C16—H16B108.0
C3—C4—C5110.6 (4)C18—C17—C16110.1 (4)
C3—C4—H4A109.5C18—C17—H17A109.6
C5—C4—H4A109.5C16—C17—H17A109.6
C3—C4—H4B109.5C18—C17—H17B109.6
C5—C4—H4B109.5C16—C17—H17B109.6
H4A—C4—H4B108.1H17A—C17—H17B108.1
C4—C5—C6111.3 (3)C19—C18—C17110.7 (4)
C4—C5—H5A109.4C19—C18—H18A109.5
C6—C5—H5A109.4C17—C18—H18A109.5
C4—C5—H5B109.4C19—C18—H18B109.5
C6—C5—H5B109.4C17—C18—H18B109.5
H5A—C5—H5B108.0H18A—C18—H18B108.1
C1—C6—C5110.7 (3)C20—C19—C18111.1 (4)
C1—C6—S1114.0 (3)C20—C19—H19A109.4
C5—C6—S1105.5 (2)C18—C19—H19A109.4
C1—C6—H6108.9C20—C19—H19B109.4
C5—C6—H6108.9C18—C19—H19B109.4
S1—C6—H6108.9H19A—C19—H19B108.0
C8—C7—S1114.2 (3)C19—C20—C15110.8 (4)
C8—C7—H7A108.7C19—C20—H20A109.5
S1—C7—H7A108.7C15—C20—H20A109.5
C8—C7—H7B108.7C19—C20—H20B109.5
S1—C7—H7B108.7C15—C20—H20B109.5
H7A—C7—H7B107.6H20A—C20—H20B108.1
C9—C8—C13118.0 (4)
O2i—Ag1—S1—C726.26 (19)S1—C7—C8—C13122.8 (4)
S2ii—Ag1—S1—C7165.66 (14)C13—C8—C9—C100.1 (6)
O1—Ag1—S1—C765.08 (15)C7—C8—C9—C10176.8 (4)
O2i—Ag1—S1—C681.2 (2)C8—C9—C10—C110.2 (7)
S2ii—Ag1—S1—C686.92 (15)C9—C10—C11—C120.0 (6)
O1—Ag1—S1—C6172.50 (16)C9—C10—C11—C14179.9 (4)
O2i—Ag1—O1—N138.0 (4)C10—C11—C12—C130.4 (6)
S2ii—Ag1—O1—N184.3 (3)C14—C11—C12—C13179.5 (4)
S1—Ag1—O1—N1131.5 (3)C9—C8—C13—C120.5 (6)
Ag1iv—O2—N1—O313.2 (7)C7—C8—C13—C12176.4 (4)
Ag1iv—O2—N1—O1169.9 (3)C11—C12—C13—C80.7 (7)
Ag1—O1—N1—O2142.9 (5)C12—C11—C14—S2110.0 (4)
Ag1—O1—N1—O340.4 (6)C10—C11—C14—S269.9 (5)
C6—C1—C2—C356.9 (5)C15—S2—C14—C1160.3 (4)
C1—C2—C3—C456.7 (5)Ag1iii—S2—C14—C11170.6 (3)
C2—C3—C4—C555.6 (5)C14—S2—C15—C1697.4 (4)
C3—C4—C5—C655.9 (5)Ag1iii—S2—C15—C16158.7 (3)
C2—C1—C6—C556.5 (4)C14—S2—C15—C20140.2 (3)
C2—C1—C6—S1175.2 (3)Ag1iii—S2—C15—C2036.3 (4)
C4—C5—C6—C156.9 (5)C20—C15—C16—C1755.8 (6)
C4—C5—C6—S1179.4 (3)S2—C15—C16—C17177.9 (4)
C7—S1—C6—C159.5 (3)C15—C16—C17—C1856.0 (6)
Ag1—S1—C6—C144.0 (3)C16—C17—C18—C1956.5 (6)
C7—S1—C6—C5178.9 (3)C17—C18—C19—C2057.6 (6)
Ag1—S1—C6—C577.6 (3)C18—C19—C20—C1557.1 (6)
C6—S1—C7—C863.2 (3)C16—C15—C20—C1956.1 (6)
Ag1—S1—C7—C8176.3 (3)S2—C15—C20—C19178.0 (3)
S1—C7—C8—C960.3 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O3v0.992.603.416 (7)140
C14—H14B···O3iii0.992.473.199 (6)130
C7—H7B···O2i0.992.433.118 (6)126
Symmetry codes: (i) x, y+1/2, z1/2; (iii) x1, y, z; (v) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C20H30S2)]
Mr504.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.1053 (6), 20.719 (1), 8.5973 (4)
β (°) 92.256 (1)
V3)2154.61 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.724, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
13362, 4804, 3174
Rint0.042
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 1.04
No. of reflections4804
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 1.00

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O3i0.992.603.416 (7)140.3
C14—H14B···O3ii0.992.473.199 (6)130.4
C7—H7B···O2iii0.992.433.118 (6)125.9
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Gyeongsang National University. The Korea Research Foundation (KRF-2007–357-C00056) is acknowledged by THK for support.

References

First citationBruker. (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, J., Yap, G. P. A. & Riordan, C. G. (2007). Inorg. Chem. 46, 11308–11315.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKim, T. H., Park, G., Shin, Y. W., Park, K.-M., Choi, M. Y. & Kim, J. (2008). Bull. Korean Chem. Soc. 29, 499–502.  CAS Google Scholar
First citationKim, T. H., Seo, J., Park, K.-M., Lee, S. S. & Kim, J. (2007). Inorg. Chem. Commun. 10, 313-317.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346–1386.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds