organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Meth­oxy­benzyl­­idene)-2-phenyl-1,3-oxazol-5(4H)-one

aChemistry Department, Faculty of Science, King Abdul-Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 11 March 2009; accepted 19 March 2009; online 25 March 2009)

The title mol­ecule, C17H13NO3, adopts a Z configuration about the central olefinic bond. The 2-phenyl ring is almost coplanar with the plane of the oxazolone ring system, making a dihedral angle of 2.03 (11)°. The crystal structure is stabilized by ππ inter­actions between the oxazolone ring and phenyl ring of a neighbouring mol­ecule [centroid–centroid distance = 3.550 (3)Å], and by two weak inter­molecular C—H⋯π inter­actions. In addition, the crystal structure exhibits one weak intra­molecular C—H⋯N hydrogen bond.

Related literature

For general background to azalactones and their biological and pharmaceutical properties, see: Cannella et al. (1996[Cannella, R., Clerici, F., Gelmi, M. L., Penso, M. & &Pocar, D. (1996). J. Org. Chem. 61,1854-1856.]); Cavelier & Verducci (1995[Cavelier, F. & Verducci, J. (1995). Tetrahedron Lett. 36, 4425-4428.]); Gelmi et al. (1997[Gelmi, M. L., Clerici, F. & Melis, A. (1997). Tetrahedron, 53, 1843-1854.]); Gonzalez-Martinez, Puchades, Maquieira, Ferrer, Marco & Barcelo (1999[Gonzalez-Martinez, M. A., Puchades, R., Maquieira, A., Ferrer, I., Marco, M. P. & Barcelo, D. (1999). Anal. Chim. Acta, 386, 201-210.]); Gottwald & Seebach (1999[Gottwald, K. & Seebach, D. (1999). Tetrahedron, 55 , 723-738.]); Mesaik et al. (2004[Mesaik, M. A., Rahat, S., Khan, M. K., Ullah, Z., Choudhary, M. I., Murad, S., Ismail, Z. & Atta-ur-Rahman, A. A. (2004). Bioorg. Med. Chem. 12, 2049-2057.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO3

  • Mr = 279.28

  • Triclinic, [P \overline 1]

  • a = 8.8073 (6) Å

  • b = 9.6140 (6) Å

  • c = 9.8272 (6) Å

  • α = 66.503 (4)°

  • β = 67.248 (4)°

  • γ = 71.734 (4)°

  • V = 691.14 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.08 × 0.05 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: none

  • 14582 measured reflections

  • 3457 independent reflections

  • 1464 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 0.93

  • 3457 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1 0.93 2.43 3.087 (3) 127
C17—H17ACg3i 0.96 2.81 3.682 (3) 151
C17—H17CCg2ii 0.96 2.96 3.832 (3) 151
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y, -z. Cg2 is the centroid of the C1–C6 benzene ring and Cg3 is the centroid of the C11—C16 phenyl ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azalactones are a class of important heterocyclic compounds and exhibit a variety of biological and pharmaceutical properties (Mesaik et al., 2004) They are also useful precursors for the synthesis of amino acids (Gottwald & Seebach, 1999), peptides (Cavelier & Verducci, 1995), heterocycles (Cannella et al., 1996), biosensors (Gonzalez-Martinez et al., 1999), and antitumoror antimicrobial compounds (Gelmi et al., 1997). Here we report the crystal structure of the title compound, 4-(2-methoxybenzylidene)-2-phenyl-1,3-oxazol-5(4H)-one (Fig. 1).

The title molecule (Fig. 1) possesses normal geometric parameters (Allen et al., 1987) and adopts a Z configuration about the central olefinic bond. The C11–C16 phenyl ring makes a dihedral angle of 2.03 (11) ° with the plane of the oxazolone ring system. The molecular packing (Fig. 2) is stabilized by intermolecular ππ interactions between the oxazolone ring and phenyl ring of neighbouring molecules, with a Cg1···Cg3iii distance of 3.550 (3) Å (Cg1 and Cg3 are the centroids of the O1/C10/N1/C8/C9 oxazolone ring and the C11—C16 phenyl ring; symmetry code as in Fig, 2). The crystal packing is further stabilized by two intermolecular C—H···π interactions; one between the H atom of methoxy group and the phenyl ring of a neighbouring molecule, a second between the H atom of methoxy group and the methoxyphenyl ring of an adjacent molecule, respectively (Fig. 2 and Table 1; Cg2 is the centroid of the C1–C6 benzene ring, symmetry code as in Fig, 2). Additionally, there is one intramolecular C—H···N hydrogen bond between a benzene—H atom and the N atom of oxazolone ring (Table 1 and Fig. 2).

Related literature top

For general background, see: Cannella et al. (1996); Cavelier & Verducci (1995); Gelmi et al. (1997); Gonzalez-Martinez, Puchades, Maquieira, Ferrer, Marco & Barcelo (1999); Gottwald & Seebach (1999); Mesaik et al. (2004). For bond-length data, see: Allen et al. (1987). Cg2 is the centroid of the C1–C6

benzene ring and Cg3 is the centroid of the C11—C16 phenyl ring.

Experimental top

Anhydrous sodium acetate (2.1 g, 25.3 mmol) was added to a solution of 2-methoxybenzaldehyde (3.5 g, 25.7 mmol) and hippuric acid (7.7 g, 31.1 mmol) in acetic anhydride (2.1 g, 20.6 mmol). The reaction mixture was heated to 353 K and stirred under reflux conditions for the appropriate time 2 h. The reaction mixture was cooled to room temperature and ethanol (10 ml) was added. The mixture was stirred for 10 min until a yellow solid precipitated. The mixture was allowed to stand overnight, and then it was cooled in an ice bath. The crude azalactones were obtained after filtration and washing with hot water. Recrystallization from acetone/water afforded the pure azalactones as yellow crystals. [Yield (5.79 g, 91%), m.p. 440–441 K]. IR (cm-1) 1769 (CO),1648 (CC).

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å and refined using a riding approximation model with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. ππ, C—H···π and C—H···N interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y, -z; (iii) -x+1, -y+1, -z+1].
4-(2-Methoxybenzylidene)-2-phenyl-1,3-oxazol-5(4H)-one top
Crystal data top
C17H13NO3Z = 2
Mr = 279.28F(000) = 292
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8073 (6) ÅCell parameters from 1969 reflections
b = 9.6140 (6) Åθ = 2.4–22.4°
c = 9.8272 (6) ŵ = 0.09 mm1
α = 66.503 (4)°T = 296 K
β = 67.248 (4)°Prism, yellow
γ = 71.734 (4)°0.28 × 0.08 × 0.05 mm
V = 691.14 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1464 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.048
Graphite monochromatorθmax = 28.5°, θmin = 2.4°
Detector resolution: 10.0 pixels mm-1h = 1111
ϕ and ω scansk = 1212
14582 measured reflectionsl = 1313
3457 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
3457 reflectionsΔρmax = 0.16 e Å3
192 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (3)
Crystal data top
C17H13NO3γ = 71.734 (4)°
Mr = 279.28V = 691.14 (8) Å3
Triclinic, P1Z = 2
a = 8.8073 (6) ÅMo Kα radiation
b = 9.6140 (6) ŵ = 0.09 mm1
c = 9.8272 (6) ÅT = 296 K
α = 66.503 (4)°0.28 × 0.08 × 0.05 mm
β = 67.248 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1464 reflections with I > 2σ(I)
14582 measured reflectionsRint = 0.048
3457 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.93Δρmax = 0.16 e Å3
3457 reflectionsΔρmin = 0.13 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25166 (15)0.44719 (14)0.39300 (14)0.0569 (5)
O20.21889 (18)0.24891 (17)0.34504 (18)0.0822 (6)
O30.71016 (18)0.05676 (17)0.02406 (16)0.0758 (6)
N10.51111 (18)0.48138 (17)0.23057 (16)0.0496 (6)
C10.7332 (2)0.2733 (2)0.0149 (2)0.0506 (7)
C20.8036 (2)0.1640 (2)0.0653 (2)0.0585 (8)
C30.9578 (3)0.1700 (3)0.1783 (2)0.0728 (9)
C41.0418 (3)0.2832 (3)0.2108 (3)0.0812 (9)
C50.9784 (3)0.3890 (3)0.1317 (2)0.0741 (9)
C60.8245 (3)0.3836 (2)0.0200 (2)0.0613 (8)
C70.5675 (2)0.2690 (2)0.1242 (2)0.0534 (7)
C80.4736 (2)0.3592 (2)0.2139 (2)0.0494 (7)
C90.3054 (3)0.3362 (2)0.3179 (2)0.0570 (8)
C100.3815 (2)0.5263 (2)0.3330 (2)0.0469 (6)
C110.3562 (2)0.6487 (2)0.3944 (2)0.0496 (7)
C120.2070 (3)0.6867 (2)0.5026 (2)0.0623 (8)
C130.1867 (3)0.8024 (3)0.5607 (3)0.0762 (9)
C140.3129 (4)0.8808 (3)0.5107 (3)0.0779 (10)
C150.4617 (3)0.8459 (3)0.4015 (3)0.0760 (10)
C160.4826 (3)0.7300 (2)0.3435 (2)0.0627 (8)
C170.7702 (3)0.0552 (3)0.1038 (3)0.0876 (10)
H31.004000.098100.231500.0870*
H41.144400.288500.288300.0970*
H51.038700.463200.153400.0890*
H60.780800.455500.033200.0740*
H70.517700.191800.134300.0640*
H120.120200.633800.536100.0750*
H130.086700.827000.634000.0910*
H140.298800.958600.550600.0940*
H150.547300.900200.367400.0910*
H160.582500.706400.269700.0750*
H17A0.780800.003700.212300.1310*
H17B0.692500.124000.060600.1310*
H17C0.877600.113100.091900.1310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0465 (8)0.0591 (8)0.0597 (8)0.0112 (7)0.0015 (6)0.0266 (7)
O20.0612 (10)0.0754 (11)0.1086 (12)0.0262 (9)0.0020 (8)0.0443 (9)
O30.0732 (10)0.0836 (11)0.0839 (10)0.0087 (9)0.0127 (8)0.0548 (9)
N10.0455 (10)0.0547 (10)0.0470 (9)0.0084 (8)0.0074 (8)0.0216 (8)
C10.0443 (12)0.0614 (13)0.0448 (10)0.0030 (10)0.0130 (9)0.0211 (10)
C20.0491 (13)0.0736 (15)0.0529 (12)0.0025 (11)0.0192 (10)0.0271 (11)
C30.0546 (14)0.1005 (19)0.0614 (13)0.0044 (14)0.0130 (11)0.0424 (13)
C40.0519 (14)0.116 (2)0.0599 (14)0.0092 (15)0.0056 (11)0.0282 (15)
C50.0538 (14)0.0970 (18)0.0667 (14)0.0201 (13)0.0109 (12)0.0236 (13)
C60.0533 (13)0.0743 (15)0.0558 (12)0.0103 (12)0.0134 (10)0.0243 (11)
C70.0508 (12)0.0569 (13)0.0542 (11)0.0078 (10)0.0138 (10)0.0230 (10)
C80.0442 (12)0.0517 (12)0.0486 (11)0.0064 (10)0.0102 (9)0.0179 (10)
C90.0504 (13)0.0538 (13)0.0639 (13)0.0091 (11)0.0088 (10)0.0244 (11)
C100.0417 (11)0.0501 (12)0.0449 (10)0.0090 (10)0.0112 (9)0.0126 (9)
C110.0476 (12)0.0492 (12)0.0504 (11)0.0018 (10)0.0184 (9)0.0162 (10)
C120.0587 (14)0.0646 (14)0.0605 (12)0.0086 (11)0.0091 (10)0.0275 (11)
C130.0818 (18)0.0753 (16)0.0744 (15)0.0038 (14)0.0150 (13)0.0430 (13)
C140.100 (2)0.0622 (15)0.0858 (17)0.0001 (15)0.0409 (15)0.0367 (13)
C150.0810 (18)0.0670 (15)0.0942 (18)0.0148 (13)0.0392 (15)0.0266 (14)
C160.0569 (14)0.0641 (14)0.0705 (13)0.0072 (11)0.0207 (11)0.0264 (12)
C170.107 (2)0.0841 (17)0.0864 (16)0.0101 (15)0.0377 (15)0.0545 (15)
Geometric parameters (Å, º) top
O1—C91.396 (2)C11—C161.380 (3)
O1—C101.378 (2)C12—C131.378 (3)
O2—C91.192 (3)C13—C141.361 (5)
O3—C21.358 (3)C14—C151.380 (4)
O3—C171.431 (3)C15—C161.377 (3)
N1—C81.398 (3)C3—H30.9300
N1—C101.285 (2)C4—H40.9300
C1—C21.409 (3)C5—H50.9300
C1—C61.386 (3)C6—H60.9300
C1—C71.441 (3)C7—H70.9300
C2—C31.383 (3)C12—H120.9300
C3—C41.371 (4)C13—H130.9300
C4—C51.375 (4)C14—H140.9300
C5—C61.376 (3)C15—H150.9300
C7—C81.345 (3)C16—H160.9300
C8—C91.464 (3)C17—H17A0.9600
C10—C111.448 (3)C17—H17B0.9600
C11—C121.385 (3)C17—H17C0.9600
O1···N12.260 (2)C4···H17Cvii3.0100
O2···C14i3.236 (3)C5···H17Cvii2.9800
O2···C12ii3.411 (3)C8···H62.8100
O1···H4iii2.8000C14···H17Aiv3.0300
O1···H122.4500C15···H17Aiv3.0200
O2···H72.7000C16···H4viii3.0700
O2···H14i2.7800C17···H32.5300
O2···H12ii2.7900H3···C172.5300
O2···H13ii2.9200H3···H17A2.3700
O3···H72.2700H3···H17C2.2900
N1···O12.260 (2)H4···O1ix2.8000
N1···C63.087 (3)H4···C16viii3.0700
N1···H62.4300H4···H16viii2.5000
N1···H162.6300H6···N12.4300
C1···C10iv3.553 (3)H6···C82.8100
C2···C10iv3.532 (3)H7···O22.7000
C5···C9iv3.481 (4)H7···O32.2700
C6···N13.087 (3)H7···H17Bx2.5600
C6···C9iv3.392 (3)H12···O12.4500
C6···C8iv3.561 (3)H12···O2ii2.7900
C8···C14v3.524 (4)H13···O2ii2.9200
C8···C6iv3.561 (3)H14···O2vi2.7800
C9···C5iv3.481 (4)H16···N12.6300
C9···C6iv3.392 (3)H16···H4viii2.5000
C10···C16v3.530 (3)H17A···C32.7900
C10···C2iv3.532 (3)H17A···H32.3700
C10···C1iv3.553 (3)H17A···C14iv3.0300
C12···O2ii3.411 (3)H17A···C15iv3.0200
C14···C8v3.524 (4)H17B···H7x2.5600
C14···O2vi3.236 (3)H17C···C32.7400
C16···C10v3.530 (3)H17C···H32.2900
C3···H17A2.7900H17C···C4vii3.0100
C3···H17C2.7400H17C···C5vii2.9800
C9—O1—C10105.44 (16)C14—C15—C16119.5 (3)
C2—O3—C17119.06 (18)C11—C16—C15120.4 (2)
C8—N1—C10105.35 (16)C2—C3—H3120.00
C2—C1—C6118.16 (17)C4—C3—H3120.00
C2—C1—C7118.56 (17)C3—C4—H4119.00
C6—C1—C7123.23 (18)C5—C4—H4119.00
O3—C2—C1115.60 (17)C4—C5—H5120.00
O3—C2—C3123.94 (19)C6—C5—H5120.00
C1—C2—C3120.5 (2)C1—C6—H6119.00
C2—C3—C4119.2 (2)C5—C6—H6119.00
C3—C4—C5121.7 (3)C1—C7—H7115.00
C4—C5—C6119.1 (3)C8—C7—H7115.00
C1—C6—C5121.38 (19)C11—C12—H12120.00
C1—C7—C8130.09 (18)C13—C12—H12120.00
N1—C8—C7129.85 (18)C12—C13—H13120.00
N1—C8—C9108.50 (16)C14—C13—H13120.00
C7—C8—C9121.64 (18)C13—C14—H14120.00
O1—C9—O2121.5 (2)C15—C14—H14120.00
O1—C9—C8104.65 (18)C14—C15—H15120.00
O2—C9—C8133.90 (18)C16—C15—H15120.00
O1—C10—N1116.07 (17)C11—C16—H16120.00
O1—C10—C11116.07 (16)C15—C16—H16120.00
N1—C10—C11127.85 (18)O3—C17—H17A110.00
C10—C11—C12121.32 (19)O3—C17—H17B109.00
C10—C11—C16119.45 (17)O3—C17—H17C109.00
C12—C11—C16119.23 (18)H17A—C17—H17B109.00
C11—C12—C13120.2 (2)H17A—C17—H17C109.00
C12—C13—C14120.0 (3)H17B—C17—H17C109.00
C13—C14—C15120.6 (3)
C10—O1—C9—O2179.7 (2)C3—C4—C5—C61.8 (4)
C10—O1—C9—C80.43 (19)C4—C5—C6—C10.5 (4)
C9—O1—C10—N10.3 (2)C1—C7—C8—N12.0 (3)
C9—O1—C10—C11179.54 (16)C1—C7—C8—C9179.55 (19)
C17—O3—C2—C1177.88 (19)N1—C8—C9—O10.5 (2)
C17—O3—C2—C31.9 (3)N1—C8—C9—O2179.7 (2)
C10—N1—C8—C7178.4 (2)C7—C8—C9—O1178.32 (17)
C10—N1—C8—C90.3 (2)C7—C8—C9—O21.5 (4)
C8—N1—C10—O10.0 (2)O1—C10—C11—C122.4 (3)
C8—N1—C10—C11179.13 (18)O1—C10—C11—C16178.04 (17)
C6—C1—C2—O3178.68 (18)N1—C10—C11—C12178.42 (19)
C6—C1—C2—C31.6 (3)N1—C10—C11—C161.1 (3)
C7—C1—C2—O33.8 (3)C10—C11—C12—C13179.2 (2)
C7—C1—C2—C3175.91 (19)C16—C11—C12—C131.2 (3)
C2—C1—C6—C51.2 (3)C10—C11—C16—C15179.4 (2)
C7—C1—C6—C5176.2 (2)C12—C11—C16—C151.1 (3)
C2—C1—C7—C8179.85 (19)C11—C12—C13—C140.6 (4)
C6—C1—C7—C82.5 (3)C12—C13—C14—C150.2 (4)
O3—C2—C3—C4180.0 (2)C13—C14—C15—C160.4 (4)
C1—C2—C3—C40.3 (3)C14—C15—C16—C110.3 (4)
C2—C3—C4—C51.4 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x1, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x+2, y, z; (viii) x+2, y+1, z; (ix) x+1, y, z1; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N10.932.433.087 (3)127
C17—H17A···Cg3iv0.962.813.682 (3)151
C17—H17C···Cg2vii0.962.963.832 (3)151
Symmetry codes: (iv) x+1, y+1, z; (vii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC17H13NO3
Mr279.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.8073 (6), 9.6140 (6), 9.8272 (6)
α, β, γ (°)66.503 (4), 67.248 (4), 71.734 (4)
V3)691.14 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.08 × 0.05
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14582, 3457, 1464
Rint0.048
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 0.93
No. of reflections3457
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N10.932.433.087 (3)127
C17—H17A···Cg3i0.962.813.682 (3)151
C17—H17C···Cg2ii0.962.963.832 (3)151
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y, z.
 

Acknowledgements

AMA acknowledges the Chemistry Department, Faculty of Science, King Abdul-Aziz University, for providing the laboratories and facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannella, R., Clerici, F., Gelmi, M. L., Penso, M. & &Pocar, D. (1996). J. Org. Chem. 61,1854-1856.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCavelier, F. & Verducci, J. (1995). Tetrahedron Lett. 36, 4425-4428.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGelmi, M. L., Clerici, F. & Melis, A. (1997). Tetrahedron, 53, 1843-1854.  CrossRef CAS Web of Science Google Scholar
First citationGonzalez-Martinez, M. A., Puchades, R., Maquieira, A., Ferrer, I., Marco, M. P. & Barcelo, D. (1999). Anal. Chim. Acta, 386, 201-210.  CAS Google Scholar
First citationGottwald, K. & Seebach, D. (1999). Tetrahedron, 55 , 723-738.  Web of Science CSD CrossRef CAS Google Scholar
First citationMesaik, M. A., Rahat, S., Khan, M. K., Ullah, Z., Choudhary, M. I., Murad, S., Ismail, Z. & Atta-ur-Rahman, A. A. (2004). Bioorg. Med. Chem. 12, 2049-2057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds