inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Gadolinium scandium germanide, Gd2Sc3Ge4

aDepartment of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA
*Correspondence e-mail: gmiller@iastate.edu

(Received 17 December 2008; accepted 26 February 2009; online 6 March 2009)

Gd2Sc3Ge4 adopts the ortho­rhom­bic Pu5Rh4-type structure. The crystal structure contains six sites in the asymmetric unit: two sites are statistically occupied by rare-earth atoms with Gd:Sc ratios of 0.967 (4):0.033 (4) and 0.031 (3):0.969 (3), one site (.m. symmetry) is occupied by Sc atoms, and three distinct sites (two of which with .m. symmetry) are occupied by Ge atoms. The rare-earth atoms form two-dimensional slabs with Ge atoms occupying the trigonal-prismatic voids.

Related literature

The title compound adopts the Pu5Rh4-type structure (Cromer, 1977[Cromer, D. T. (1977). Acta Cryst. B33, 1993-1995.]). For Ge⋯Ge distances, see: Mozharivskyj et al. (2003[Mozharivskyj, Y., Choe, W., Pecharsky, A. O. & Miller, G. J. (2003). J. Am. Chem. Soc. 125, 15183-15190.]); Holtzberg et al. (1967[Holtzberg, F., Gambino, R. J. & McGuire, T. R. (1967). J. Phys. Chem. Solids, 28, 2283-2289.]); Smith et al. (1967[Smith, G. S., Johnson, Q. & Tharp, A. G. (1967). Acta Cryst. 22, 269-272.]). For atomic radii. see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For the Hamilton significance test, see: Hamilton (1965[Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.]). For a mixed rare-earth system, see: Misra & Miller (2008[Misra, S. & Miller, G. J. (2008). J. Am. Chem. Soc. 130, 13900-13911.]).

Experimental

Crystal data
  • Gd2Sc3Ge4

  • Mr = 739.74

  • Orthorhombic, P n m a

  • a = 7.2445 (13) Å

  • b = 14.101 (3) Å

  • c = 7.4930 (14) Å

  • V = 765.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 34.91 mm−1

  • T = 298 K

  • 0.06 × 0.05 × 0.01 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.127, Tmax = 0.705

  • 6182 measured reflections

  • 958 independent reflections

  • 816 reflections with I > 2s(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.066

  • S = 1.05

  • 958 reflections

  • 49 parameters

  • Δρmax = 2.20 e Å−3

  • Δρmin = −1.44 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Continuing our efforts in mixed rare-earth systems bearing the formula (R1-xR'x)5T4, where T = Si, Ge, Ga, Sn, we have studied the effect of substitution of Gd by nonmagnetic Sc. Gd2Sc3Ge4 crystallizes in the orthorhombic Pu5Rh4-type structure (Cromer, 1977). Two 32434 nets built up of Gd and Sc atoms are placed over one another to form two-dimensional slabs with additional Sc atoms in pseudo-cubic coordination and Ge atoms in trigonal prismatic voids (Fig. 1).

The two metal sites situated at the edges of the cube (M1 and M2) exhibit mixed site occupancies, with Gd (the larger atom; Shannon, 1976) having a preference for the M1 site and Sc (the smaller atom; Shannon, 1976) having a preference for the M2 site. The M3 site is completely occupied by Sc atom. This disordered model which introduces two additional refinement parameters yields a statistically significant improvement over various ordered models, at the 0.5% significance level according to a Hamilton's significance test on the crystallographic R factor (Hamilton, 1965).

The Ge1–Ge1 distances are intermediate between those in Gd5Ga2Ge2 [2.741 (1) Å; Gd5Si4-type (Holtzberg et al., 1967)] and Gd5Ga0.7Ge3.3 [3.461 (5) Å; Sm5Ge4-type (Smith et al., 1967)] (Mozharivskyj et al., 2003).

Related literature top

The title compound adopts the Pu5Rh4-type structure (Cromer, 1977). For Ge···Ge distances, see: Mozharivskyj et al. (2003); Holtzberg et al. (1967); Smith et al. (1967). For atomic radii. see: Shannon (1976). For the Hamilton significance test, see: Hamilton (1965). For related literature, see: Misra & Miller (2008).

Experimental top

Gd2Sc3Ge4 was prepared by arc-melting pieces of the constituent elements (Gd, 99.99 wt. %, Materials Preparation Center, Ames Laboratory; Sc, 99.99 wt. %, Materials Preparation Center, Ames Laboratory; Ge, 99.9999 wt. %, Alfa Aesar) in an argon atmosphere on a water-cooled copper hearth. The ingot had a total weight of ca. 0.8 g and was remelted six times with the button being turned over after each melting to ensure homogeneity. Weight losses during melting were less than 0.1 wt. %.

Refinement top

A disordered model works best compared to an ordered model and this has been confirmed by a Hamilton's significance test on the crystallographic R factor. We formulated four hypotheses to be tested: (A) M1 site is all Gd, M2 site is all Sc; (B) M1 site is all Gd, M2 site is mixed with Gd and Sc; (C) M1 site is mixed with Gd and Sc, M1 site is all Sc; and (D) both M1 and M2 sites are mixed with Gd and Sc. The number of parameters refined in the four cases were mA = 47, mB = 48, mC = 48, and mD = 49. There were 958 reflections. The R factors achieved were RA = 0.0333, RB = 0.0318, RC = 0.0326, and RD = 0.0313. We could reject hypotheses (A), (B), and (C) at the 0.5% level of significance corresponding to hypothesis (D).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of Gd2Sc3Ge4 along [001], with displacement ellipsoids drawn at the 99 % probability level.
Diadolinium triscandium tetragermanide top
Crystal data top
Gd2Sc3Ge4F(000) = 1276
Mr = 739.74Dx = 6.419 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6182 reflections
a = 7.2445 (13) Åθ = 3.1–27.8°
b = 14.101 (3) ŵ = 34.91 mm1
c = 7.4930 (14) ÅT = 298 K
V = 765.4 (2) Å3Plate, grey
Z = 40.06 × 0.05 × 0.01 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
958 independent reflections
Radiation source: fine-focus sealed tube816 reflections with I > 2s(I)
Graphite monochromatorRint = 0.070
ϕ and ω scansθmax = 28.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.127, Tmax = 0.705k = 1718
6182 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0171P)2 + 3.8343P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.20 e Å3
958 reflectionsΔρmin = 1.44 e Å3
49 parametersExtinction correction: SHELXL97 (Bruker, 2002), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00245 (16)
Crystal data top
Gd2Sc3Ge4V = 765.4 (2) Å3
Mr = 739.74Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.2445 (13) ŵ = 34.91 mm1
b = 14.101 (3) ÅT = 298 K
c = 7.4930 (14) Å0.06 × 0.05 × 0.01 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
958 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
816 reflections with I > 2s(I)
Tmin = 0.127, Tmax = 0.705Rint = 0.070
6182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03149 parameters
wR(F2) = 0.0660 restraints
S = 1.05Δρmax = 2.20 e Å3
958 reflectionsΔρmin = 1.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Gd10.99788 (5)0.40395 (3)0.17641 (5)0.00746 (16)0.967 (4)
Sc10.99788 (5)0.40395 (3)0.17641 (5)0.00746 (16)0.033 (4)
Gd20.6602 (2)0.37594 (9)0.83229 (17)0.0081 (5)0.031 (3)
Sc20.6602 (2)0.37594 (9)0.83229 (17)0.0081 (5)0.969 (3)
Sc30.1761 (3)0.75000.5005 (3)0.0072 (4)
Ge10.82216 (12)0.45888 (6)0.54068 (11)0.0091 (2)
Ge20.03997 (16)0.75000.12561 (16)0.0081 (3)
Ge30.30680 (16)0.75000.86322 (15)0.0081 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0064 (2)0.0085 (2)0.0074 (2)0.00025 (14)0.00024 (15)0.00013 (15)
Sc10.0064 (2)0.0085 (2)0.0074 (2)0.00025 (14)0.00024 (15)0.00013 (15)
Gd20.0095 (8)0.0083 (7)0.0065 (8)0.0000 (5)0.0006 (5)0.0001 (5)
Sc20.0095 (8)0.0083 (7)0.0065 (8)0.0000 (5)0.0006 (5)0.0001 (5)
Sc30.0067 (10)0.0079 (10)0.0072 (10)0.0000.0000 (8)0.000
Ge10.0113 (5)0.0086 (4)0.0073 (4)0.0011 (3)0.0009 (3)0.0008 (3)
Ge20.0068 (6)0.0098 (6)0.0077 (6)0.0000.0012 (5)0.000
Ge30.0085 (6)0.0082 (6)0.0077 (6)0.0000.0008 (5)0.000
Geometric parameters (Å, º) top
Gd1—Ge3i2.9452 (9)Sc3—Gd2xiv3.268 (2)
Gd1—Ge1ii2.9605 (10)Sc3—Sc2xii3.283 (2)
Gd1—Ge13.1097 (10)Sc3—Gd2iii3.283 (2)
Gd1—Ge3iii3.1101 (10)Ge1—Sc2i2.8070 (16)
Gd1—Ge2iv3.1478 (10)Ge1—Gd2i2.8070 (16)
Gd1—Ge1v3.1519 (10)Ge1—Sc2xv2.8759 (17)
Gd1—Ge1i3.1861 (10)Ge1—Gd2xv2.8759 (17)
Gd1—Sc3i3.4681 (17)Ge1—Ge1v2.8907 (17)
Gd1—Sc3iii3.4877 (17)Ge1—Gd1xvi2.9605 (10)
Gd1—Sc2i3.5083 (15)Ge1—Sc1xvi2.9605 (10)
Gd1—Gd2i3.5083 (15)Ge1—Sc3iii2.9614 (10)
Gd1—Gd2vi3.5762 (15)Ge2—Ge3vi2.7572 (17)
Gd2—Ge12.7421 (15)Ge2—Sc2xiv2.7668 (16)
Gd2—Ge2vii2.7668 (16)Ge2—Gd2xiv2.7668 (16)
Gd2—Ge1viii2.8070 (16)Ge2—Sc2xiii2.7668 (16)
Gd2—Ge2iii2.8234 (17)Ge2—Gd2xiii2.7668 (16)
Gd2—Ge1ix2.8759 (17)Ge2—Sc3xvi2.800 (2)
Gd2—Ge3x2.9010 (16)Ge2—Sc2xii2.8234 (17)
Gd2—Sc3vii3.268 (2)Ge2—Gd2xii2.8234 (17)
Gd2—Sc3iii3.283 (2)Ge2—Gd2iii2.8234 (17)
Gd2—Gd1viii3.5083 (15)Ge2—Sc2iii2.8234 (17)
Gd2—Sc1viii3.5083 (15)Ge2—Sc1iv3.1478 (10)
Gd2—Sc2xi3.552 (3)Ge3—Ge2xvii2.7572 (17)
Gd2—Gd2xi3.552 (3)Ge3—Sc3xv2.864 (2)
Sc3—Ge2ii2.800 (2)Ge3—Sc2xviii2.9010 (16)
Sc3—Ge3ix2.864 (2)Ge3—Gd2xviii2.9010 (16)
Sc3—Ge32.878 (2)Ge3—Sc2x2.9010 (16)
Sc3—Ge1xii2.9614 (10)Ge3—Gd2x2.9010 (16)
Sc3—Ge1iii2.9614 (10)Ge3—Gd1xix2.9452 (9)
Sc3—Ge22.977 (2)Ge3—Sc1xix2.9452 (9)
Sc3—Sc2xiii3.268 (2)Ge3—Gd1viii2.9452 (9)
Sc3—Gd2xiii3.268 (2)Ge3—Sc1viii2.9452 (9)
Sc3—Sc2xiv3.268 (2)Ge3—Gd1iii3.1101 (10)
Ge3i—Gd1—Ge1ii94.17 (3)Ge3ix—Sc3—Gd2iii127.47 (6)
Ge3i—Gd1—Ge187.88 (3)Ge3—Sc3—Gd2iii126.76 (6)
Ge1ii—Gd1—Ge1137.90 (3)Ge1xii—Sc3—Gd2iii117.23 (7)
Ge3i—Gd1—Ge3iii82.64 (2)Ge1iii—Sc3—Gd2iii51.79 (3)
Ge1ii—Gd1—Ge3iii133.89 (3)Ge2—Sc3—Gd2iii53.35 (4)
Ge1—Gd1—Ge3iii88.12 (3)Sc2xiii—Sc3—Gd2iii71.49 (4)
Ge3i—Gd1—Ge2iv82.83 (3)Gd2xiii—Sc3—Gd2iii71.49 (4)
Ge1ii—Gd1—Ge2iv81.64 (3)Sc2xiv—Sc3—Gd2iii105.69 (6)
Ge1—Gd1—Ge2iv140.09 (3)Gd2xiv—Sc3—Gd2iii105.69 (6)
Ge3iii—Gd1—Ge2iv52.28 (3)Sc2xii—Sc3—Gd2iii65.50 (6)
Ge3i—Gd1—Ge1v86.21 (3)Gd2—Ge1—Sc2i144.75 (4)
Ge1ii—Gd1—Ge1v83.153 (17)Gd2—Ge1—Gd2i144.75 (4)
Ge1—Gd1—Ge1v54.98 (3)Sc2i—Ge1—Gd2i0.00 (5)
Ge3iii—Gd1—Ge1v141.82 (3)Gd2—Ge1—Sc2xv85.83 (4)
Ge2iv—Gd1—Ge1v160.52 (3)Sc2i—Ge1—Sc2xv118.86 (4)
Ge3i—Gd1—Ge1i161.59 (3)Gd2i—Ge1—Sc2xv118.86 (4)
Ge1ii—Gd1—Ge1i104.08 (3)Gd2—Ge1—Gd2xv85.83 (4)
Ge1—Gd1—Ge1i80.275 (17)Sc2i—Ge1—Gd2xv118.86 (4)
Ge3iii—Gd1—Ge1i82.92 (3)Gd2i—Ge1—Gd2xv118.86 (4)
Ge2iv—Gd1—Ge1i97.23 (3)Sc2xv—Ge1—Gd2xv0.00 (7)
Ge1v—Gd1—Ge1i98.23 (3)Gd2—Ge1—Ge1v136.10 (5)
Ge3i—Gd1—Sc3i52.57 (4)Sc2i—Ge1—Ge1v60.61 (4)
Ge1ii—Gd1—Sc3i54.16 (3)Gd2i—Ge1—Ge1v60.61 (4)
Ge1—Gd1—Sc3i140.20 (4)Sc2xv—Ge1—Ge1v58.26 (4)
Ge3iii—Gd1—Sc3i90.58 (3)Gd2xv—Ge1—Ge1v58.26 (4)
Ge2iv—Gd1—Sc3i49.79 (4)Gd2—Ge1—Gd1xvi89.24 (4)
Ge1v—Gd1—Sc3i110.99 (4)Sc2i—Ge1—Gd1xvi86.99 (4)
Ge1i—Gd1—Sc3i138.95 (4)Gd2i—Ge1—Gd1xvi86.99 (4)
Ge3i—Gd1—Sc3iii52.04 (4)Sc2xv—Ge1—Gd1xvi138.69 (4)
Ge1ii—Gd1—Sc3iii146.21 (4)Gd2xv—Ge1—Gd1xvi138.69 (4)
Ge1—Gd1—Sc3iii52.97 (3)Ge1v—Ge1—Gd1xvi134.14 (5)
Ge3iii—Gd1—Sc3iii51.34 (4)Gd2—Ge1—Sc1xvi89.24 (4)
Ge2iv—Gd1—Sc3iii92.20 (3)Sc2i—Ge1—Sc1xvi86.99 (4)
Ge1v—Gd1—Sc3iii93.70 (4)Gd2i—Ge1—Sc1xvi86.99 (4)
Ge1i—Gd1—Sc3iii109.66 (4)Sc2xv—Ge1—Sc1xvi138.69 (4)
Sc3i—Gd1—Sc3iii96.92 (4)Gd2xv—Ge1—Sc1xvi138.69 (4)
Ge3i—Gd1—Sc2i130.59 (3)Ge1v—Ge1—Sc1xvi134.14 (5)
Ge1ii—Gd1—Sc2i102.15 (3)Gd1xvi—Ge1—Sc1xvi0.000 (17)
Ge1—Gd1—Sc2i49.75 (3)Gd2—Ge1—Sc3iii70.16 (5)
Ge3iii—Gd1—Sc2i114.68 (3)Sc2i—Ge1—Sc3iii140.10 (6)
Ge2iv—Gd1—Sc2i145.18 (3)Gd2i—Ge1—Sc3iii140.10 (6)
Ge1v—Gd1—Sc2i50.82 (3)Sc2xv—Ge1—Sc3iii68.07 (5)
Ge1i—Gd1—Sc2i48.06 (3)Gd2xv—Ge1—Sc3iii68.07 (5)
Sc3i—Gd1—Sc2i154.50 (3)Ge1v—Ge1—Sc3iii111.92 (6)
Sc3iii—Gd1—Sc2i101.62 (3)Gd1xvi—Ge1—Sc3iii71.70 (5)
Ge3i—Gd1—Gd2i130.59 (3)Sc1xvi—Ge1—Sc3iii71.70 (5)
Ge1ii—Gd1—Gd2i102.15 (3)Gd2—Ge1—Gd1140.21 (4)
Ge1—Gd1—Gd2i49.75 (3)Sc2i—Ge1—Gd172.53 (3)
Ge3iii—Gd1—Gd2i114.68 (3)Gd2i—Ge1—Gd172.53 (3)
Ge2iv—Gd1—Gd2i145.18 (3)Sc2xv—Ge1—Gd180.83 (4)
Ge1v—Gd1—Gd2i50.82 (3)Gd2xv—Ge1—Gd180.83 (4)
Ge1i—Gd1—Gd2i48.06 (3)Ge1v—Ge1—Gd163.25 (3)
Sc3i—Gd1—Gd2i154.50 (3)Gd1xvi—Ge1—Gd177.14 (2)
Sc3iii—Gd1—Gd2i101.62 (3)Sc1xvi—Ge1—Gd177.14 (2)
Sc2i—Gd1—Gd2i0.00 (4)Sc3iii—Ge1—Gd170.08 (4)
Ge3i—Gd1—Gd2vi126.15 (3)Ge3vi—Ge2—Sc2xiv140.05 (3)
Ge1ii—Gd1—Gd2vi100.11 (3)Ge3vi—Ge2—Gd2xiv140.05 (3)
Ge1—Gd1—Gd2vi112.35 (3)Sc2xiv—Ge2—Gd2xiv0.00 (5)
Ge3iii—Gd1—Gd2vi50.84 (3)Ge3vi—Ge2—Sc2xiii140.05 (3)
Ge2iv—Gd1—Gd2vi49.15 (3)Sc2xiv—Ge2—Sc2xiii79.86 (7)
Ge1v—Gd1—Gd2vi146.68 (3)Gd2xiv—Ge2—Sc2xiii79.86 (7)
Ge1i—Gd1—Gd2vi48.63 (3)Ge3vi—Ge2—Gd2xiii140.05 (3)
Sc3i—Gd1—Gd2vi97.04 (4)Sc2xiv—Ge2—Gd2xiii79.86 (7)
Sc3iii—Gd1—Gd2vi100.63 (4)Gd2xiv—Ge2—Gd2xiii79.86 (7)
Sc2i—Gd1—Gd2vi96.57 (3)Sc2xiii—Ge2—Gd2xiii0.00 (5)
Gd2i—Gd1—Gd2vi96.57 (3)Ge3vi—Ge2—Sc3xvi114.80 (6)
Ge1—Gd2—Ge2vii92.98 (5)Sc2xiv—Ge2—Sc3xvi72.27 (5)
Ge1—Gd2—Ge1viii94.01 (4)Gd2xiv—Ge2—Sc3xvi72.27 (5)
Ge2vii—Gd2—Ge1viii150.21 (6)Sc2xiii—Ge2—Sc3xvi72.27 (5)
Ge1—Gd2—Ge2iii91.61 (5)Gd2xiii—Ge2—Sc3xvi72.27 (5)
Ge2vii—Gd2—Ge2iii93.56 (4)Ge3vi—Ge2—Sc2xii62.63 (4)
Ge1viii—Gd2—Ge2iii115.13 (5)Sc2xiv—Ge2—Sc2xii86.39 (4)
Ge1—Gd2—Ge1ix117.05 (5)Gd2xiv—Ge2—Sc2xii86.39 (4)
Ge2vii—Gd2—Ge1ix90.00 (5)Sc2xiii—Ge2—Sc2xii138.11 (5)
Ge1viii—Gd2—Ge1ix61.14 (4)Gd2xiii—Ge2—Sc2xii138.11 (5)
Ge2iii—Gd2—Ge1ix150.92 (6)Sc3xvi—Ge2—Sc2xii139.64 (4)
Ge1—Gd2—Ge3x148.48 (6)Ge3vi—Ge2—Gd2xii62.63 (4)
Ge2vii—Gd2—Ge3x95.19 (5)Sc2xiv—Ge2—Gd2xii86.39 (4)
Ge1viii—Gd2—Ge3x93.83 (5)Gd2xiv—Ge2—Gd2xii86.39 (4)
Ge2iii—Gd2—Ge3x57.57 (4)Sc2xiii—Ge2—Gd2xii138.11 (5)
Ge1ix—Gd2—Ge3x93.37 (5)Gd2xiii—Ge2—Gd2xii138.11 (5)
Ge1—Gd2—Sc3vii149.10 (6)Sc3xvi—Ge2—Gd2xii139.64 (4)
Ge2vii—Gd2—Sc3vii58.41 (5)Sc2xii—Ge2—Gd2xii0.00 (7)
Ge1viii—Gd2—Sc3vii105.69 (5)Ge3vi—Ge2—Gd2iii62.63 (4)
Ge2iii—Gd2—Sc3vii100.88 (5)Sc2xiv—Ge2—Gd2iii138.11 (5)
Ge1ix—Gd2—Sc3vii57.21 (4)Gd2xiv—Ge2—Gd2iii138.11 (5)
Ge3x—Gd2—Sc3vii54.94 (5)Sc2xiii—Ge2—Gd2iii86.39 (4)
Ge1—Gd2—Sc3iii58.06 (4)Gd2xiii—Ge2—Gd2iii86.39 (4)
Ge2vii—Gd2—Sc3iii54.33 (5)Sc3xvi—Ge2—Gd2iii139.64 (4)
Ge1viii—Gd2—Sc3iii148.75 (6)Sc2xii—Ge2—Gd2iii77.95 (6)
Ge2iii—Gd2—Sc3iii57.77 (5)Gd2xii—Ge2—Gd2iii77.95 (6)
Ge1ix—Gd2—Sc3iii141.16 (6)Ge3vi—Ge2—Sc2iii62.63 (4)
Ge3x—Gd2—Sc3iii103.67 (5)Sc2xiv—Ge2—Sc2iii138.11 (5)
Sc3vii—Gd2—Sc3iii105.56 (5)Gd2xiv—Ge2—Sc2iii138.11 (5)
Ge1—Gd2—Gd1viii59.81 (3)Sc2xiii—Ge2—Sc2iii86.39 (4)
Ge2vii—Gd2—Gd1viii102.14 (4)Gd2xiii—Ge2—Sc2iii86.39 (4)
Ge1viii—Gd2—Gd1viii57.73 (3)Sc3xvi—Ge2—Sc2iii139.64 (4)
Ge2iii—Gd2—Gd1viii147.65 (5)Sc2xii—Ge2—Sc2iii77.95 (6)
Ge1ix—Gd2—Gd1viii58.16 (3)Gd2xii—Ge2—Sc2iii77.95 (6)
Ge3x—Gd2—Gd1viii146.13 (5)Gd2iii—Ge2—Sc2iii0.00 (7)
Sc3vii—Gd2—Gd1viii111.45 (5)Ge3vi—Ge2—Sc3116.13 (6)
Sc3iii—Gd2—Gd1viii110.10 (4)Sc2xiv—Ge2—Sc369.24 (5)
Ge1—Gd2—Sc1viii59.81 (3)Gd2xiv—Ge2—Sc369.24 (5)
Ge2vii—Gd2—Sc1viii102.14 (4)Sc2xiii—Ge2—Sc369.24 (5)
Ge1viii—Gd2—Sc1viii57.73 (3)Gd2xiii—Ge2—Sc369.24 (5)
Ge2iii—Gd2—Sc1viii147.65 (5)Sc3xvi—Ge2—Sc3129.07 (7)
Ge1ix—Gd2—Sc1viii58.16 (3)Sc2xii—Ge2—Sc368.88 (5)
Ge3x—Gd2—Sc1viii146.13 (5)Gd2xii—Ge2—Sc368.88 (5)
Sc3vii—Gd2—Sc1viii111.45 (5)Gd2iii—Ge2—Sc368.88 (5)
Sc3iii—Gd2—Sc1viii110.10 (4)Sc2iii—Ge2—Sc368.88 (5)
Gd1viii—Gd2—Sc1viii0.000 (12)Ge3vi—Ge2—Sc1iv63.16 (3)
Ge1—Gd2—Sc2xi115.24 (3)Sc2xiv—Ge2—Sc1iv143.07 (5)
Ge2vii—Gd2—Sc2xi50.07 (3)Gd2xiv—Ge2—Sc1iv143.07 (5)
Ge1viii—Gd2—Sc2xi146.07 (3)Sc2xiii—Ge2—Sc1iv85.07 (3)
Ge2iii—Gd2—Sc2xi51.02 (3)Gd2xiii—Ge2—Sc1iv85.07 (3)
Ge1ix—Gd2—Sc2xi113.99 (3)Sc3xvi—Ge2—Sc1iv71.06 (4)
Ge3x—Gd2—Sc2xi52.25 (3)Sc2xii—Ge2—Sc1iv125.53 (5)
Sc3vii—Gd2—Sc2xi57.08 (3)Gd2xii—Ge2—Sc1iv125.53 (5)
Sc3iii—Gd2—Sc2xi57.25 (3)Gd2iii—Ge2—Sc1iv73.36 (3)
Gd1viii—Gd2—Sc2xi152.21 (2)Sc2iii—Ge2—Sc1iv73.36 (3)
Sc1viii—Gd2—Sc2xi152.21 (2)Sc3—Ge2—Sc1iv135.00 (2)
Ge1—Gd2—Gd2xi115.24 (3)Ge2xvii—Ge3—Sc3xv113.62 (6)
Ge2vii—Gd2—Gd2xi50.07 (3)Ge2xvii—Ge3—Sc3116.29 (7)
Ge1viii—Gd2—Gd2xi146.07 (3)Sc3xv—Ge3—Sc3130.10 (7)
Ge2iii—Gd2—Gd2xi51.02 (3)Ge2xvii—Ge3—Sc2xviii59.80 (4)
Ge1ix—Gd2—Gd2xi113.99 (3)Sc3xv—Ge3—Sc2xviii69.05 (5)
Ge3x—Gd2—Gd2xi52.25 (3)Sc3—Ge3—Sc2xviii140.34 (4)
Sc3vii—Gd2—Gd2xi57.08 (3)Ge2xvii—Ge3—Gd2xviii59.80 (4)
Sc3iii—Gd2—Gd2xi57.25 (3)Sc3xv—Ge3—Gd2xviii69.05 (5)
Gd1viii—Gd2—Gd2xi152.21 (2)Sc3—Ge3—Gd2xviii140.34 (4)
Sc1viii—Gd2—Gd2xi152.21 (2)Sc2xviii—Ge3—Gd2xviii0.00 (3)
Sc2xi—Gd2—Gd2xi0.00 (6)Ge2xvii—Ge3—Sc2x59.80 (4)
Ge2ii—Sc3—Ge3ix178.82 (9)Sc3xv—Ge3—Sc2x69.05 (5)
Ge2ii—Sc3—Ge390.52 (7)Sc3—Ge3—Sc2x140.34 (4)
Ge3ix—Sc3—Ge388.30 (6)Sc2xviii—Ge3—Sc2x75.49 (6)
Ge2ii—Sc3—Ge1xii87.76 (4)Gd2xviii—Ge3—Sc2x75.49 (6)
Ge3ix—Sc3—Ge1xii92.35 (4)Ge2xvii—Ge3—Gd2x59.80 (4)
Ge3—Sc3—Ge1xii95.56 (4)Sc3xv—Ge3—Gd2x69.05 (5)
Ge2ii—Sc3—Ge1iii87.76 (4)Sc3—Ge3—Gd2x140.34 (4)
Ge3ix—Sc3—Ge1iii92.35 (4)Sc2xviii—Ge3—Gd2x75.49 (6)
Ge3—Sc3—Ge1iii95.56 (4)Gd2xviii—Ge3—Gd2x75.49 (6)
Ge1xii—Sc3—Ge1iii168.04 (8)Sc2x—Ge3—Gd2x0.00 (4)
Ge2ii—Sc3—Ge289.64 (6)Ge2xvii—Ge3—Gd1xix132.513 (19)
Ge3ix—Sc3—Ge291.54 (7)Sc3xv—Ge3—Gd1xix73.78 (4)
Ge3—Sc3—Ge2179.85 (9)Sc3—Ge3—Gd1xix73.09 (4)
Ge1xii—Sc3—Ge284.44 (4)Sc2xviii—Ge3—Gd1xix83.28 (3)
Ge1iii—Sc3—Ge284.44 (4)Gd2xviii—Ge3—Gd1xix83.28 (3)
Ge2ii—Sc3—Sc2xiii124.88 (6)Sc2x—Ge3—Gd1xix141.76 (5)
Ge3ix—Sc3—Sc2xiii56.01 (5)Gd2x—Ge3—Gd1xix141.76 (5)
Ge3—Sc3—Sc2xiii127.54 (6)Ge2xvii—Ge3—Sc1xix132.513 (19)
Ge1xii—Sc3—Sc2xiii120.23 (7)Sc3xv—Ge3—Sc1xix73.78 (4)
Ge1iii—Sc3—Sc2xiii54.72 (4)Sc3—Ge3—Sc1xix73.09 (4)
Ge2—Sc3—Sc2xiii52.35 (4)Sc2xviii—Ge3—Sc1xix83.28 (3)
Ge2ii—Sc3—Gd2xiii124.88 (6)Gd2xviii—Ge3—Sc1xix83.28 (3)
Ge3ix—Sc3—Gd2xiii56.01 (5)Sc2x—Ge3—Sc1xix141.76 (5)
Ge3—Sc3—Gd2xiii127.54 (6)Gd2x—Ge3—Sc1xix141.76 (5)
Ge1xii—Sc3—Gd2xiii120.23 (7)Gd1xix—Ge3—Sc1xix0.000 (17)
Ge1iii—Sc3—Gd2xiii54.72 (4)Ge2xvii—Ge3—Gd1viii132.513 (19)
Ge2—Sc3—Gd2xiii52.35 (4)Sc3xv—Ge3—Gd1viii73.78 (4)
Sc2xiii—Sc3—Gd2xiii0.00 (3)Sc3—Ge3—Gd1viii73.09 (4)
Ge2ii—Sc3—Sc2xiv124.88 (6)Sc2xviii—Ge3—Gd1viii141.76 (5)
Ge3ix—Sc3—Sc2xiv56.01 (5)Gd2xviii—Ge3—Gd1viii141.76 (5)
Ge3—Sc3—Sc2xiv127.54 (6)Sc2x—Ge3—Gd1viii83.28 (3)
Ge1xii—Sc3—Sc2xiv54.72 (4)Gd2x—Ge3—Gd1viii83.28 (3)
Ge1iii—Sc3—Sc2xiv120.23 (7)Gd1xix—Ge3—Gd1viii94.96 (4)
Ge2—Sc3—Sc2xiv52.35 (4)Sc1xix—Ge3—Gd1viii94.96 (4)
Sc2xiii—Sc3—Sc2xiv65.84 (6)Ge2xvii—Ge3—Sc1viii132.513 (19)
Gd2xiii—Sc3—Sc2xiv65.84 (6)Sc3xv—Ge3—Sc1viii73.78 (4)
Ge2ii—Sc3—Gd2xiv124.88 (6)Sc3—Ge3—Sc1viii73.09 (4)
Ge3ix—Sc3—Gd2xiv56.01 (5)Sc2xviii—Ge3—Sc1viii141.76 (5)
Ge3—Sc3—Gd2xiv127.54 (6)Gd2xviii—Ge3—Sc1viii141.76 (5)
Ge1xii—Sc3—Gd2xiv54.72 (4)Sc2x—Ge3—Sc1viii83.28 (3)
Ge1iii—Sc3—Gd2xiv120.23 (7)Gd2x—Ge3—Sc1viii83.28 (3)
Ge2—Sc3—Gd2xiv52.35 (4)Gd1xix—Ge3—Sc1viii94.96 (4)
Sc2xiii—Sc3—Gd2xiv65.84 (6)Sc1xix—Ge3—Sc1viii94.96 (4)
Gd2xiii—Sc3—Gd2xiv65.84 (6)Gd1viii—Ge3—Sc1viii0.000 (17)
Sc2xiv—Sc3—Gd2xiv0.00 (3)Ge2xvii—Ge3—Gd1iii64.56 (3)
Ge2ii—Sc3—Sc2xii53.40 (4)Sc3xv—Ge3—Gd1iii134.19 (2)
Ge3ix—Sc3—Sc2xii127.47 (6)Sc3—Ge3—Gd1iii71.12 (4)
Ge3—Sc3—Sc2xii126.76 (6)Sc2xviii—Ge3—Gd1iii124.12 (5)
Ge1xii—Sc3—Sc2xii51.79 (3)Gd2xviii—Ge3—Gd1iii124.12 (5)
Ge1iii—Sc3—Sc2xii117.23 (7)Sc2x—Ge3—Gd1iii72.92 (3)
Ge2—Sc3—Sc2xii53.35 (4)Gd2x—Ge3—Gd1iii72.92 (3)
Sc2xiii—Sc3—Sc2xii105.69 (6)Gd1xix—Ge3—Gd1iii144.10 (4)
Gd2xiii—Sc3—Sc2xii105.69 (6)Sc1xix—Ge3—Gd1iii144.10 (4)
Sc2xiv—Sc3—Sc2xii71.49 (4)Gd1viii—Ge3—Gd1iii77.357 (18)
Gd2xiv—Sc3—Sc2xii71.49 (4)Sc1viii—Ge3—Gd1iii77.357 (18)
Ge2ii—Sc3—Gd2iii53.40 (4)
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1/2, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x+2, y+1, z+1; (vi) x, y, z1; (vii) x+1/2, y+1, z+1/2; (viii) x+3/2, y+1, z+1/2; (ix) x1/2, y, z+3/2; (x) x+1, y+1, z+2; (xi) x, y+1/2, z; (xii) x+1, y+1/2, z+1; (xiii) x+1/2, y+1, z1/2; (xiv) x+1/2, y+1/2, z1/2; (xv) x+1/2, y, z+3/2; (xvi) x1/2, y, z+1/2; (xvii) x, y, z+1; (xviii) x+1, y+1/2, z+2; (xix) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaGd2Sc3Ge4
Mr739.74
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.2445 (13), 14.101 (3), 7.4930 (14)
V3)765.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)34.91
Crystal size (mm)0.06 × 0.05 × 0.01
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.127, 0.705
No. of measured, independent and
observed [I > 2s(I)] reflections
6182, 958, 816
Rint0.070
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.066, 1.05
No. of reflections958
No. of parameters49
Δρmax, Δρmin (e Å3)2.20, 1.44

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was carried out at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Divison of the Office of Basic Energy Sciences of the US Department of Energy.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCromer, D. T. (1977). Acta Cryst. B33, 1993–1995.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHamilton, W. C. (1965). Acta Cryst. 18, 502–510.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHoltzberg, F., Gambino, R. J. & McGuire, T. R. (1967). J. Phys. Chem. Solids, 28, 2283–2289.  CrossRef CAS Web of Science Google Scholar
First citationMisra, S. & Miller, G. J. (2008). J. Am. Chem. Soc. 130, 13900–13911.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMozharivskyj, Y., Choe, W., Pecharsky, A. O. & Miller, G. J. (2003). J. Am. Chem. Soc. 125, 15183–15190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. S., Johnson, Q. & Tharp, A. G. (1967). Acta Cryst. 22, 269–272.  CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds