organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro-4-phenethyl-2H-1,4-benzoxazin-3(4H)-one

aCollege of Chemical and Environmental Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China, bCollege of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China, cSchool of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China, and dCollege of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
*Correspondence e-mail: zuohuabest@yahoo.com

(Received 26 February 2009; accepted 3 March 2009; online 6 March 2009)

In the crystal structure of title compound, C16H14ClNO2, the dihedral angle between the aromatic rings is 4.2 (2)°.

Related literature

For related structures, see: Li et al. (2008[Li, Z.-B., Luo, Y.-H., Dong, W.-L., Li, J. & Zuo, H. (2008). Acta Cryst. E64, o1610.]); Zuo et al. (2008[Zuo, H., Meng, L., Ghate, M., Hwang, K. H., Cho, Y. K., Chandrasekhar, S., Reddy, C. R. & Shin, D. S. (2008). Tetrahedron Lett. 49, 3827-3830.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClNO2

  • Mr = 287.73

  • Orthorhombic, I b a 2

  • a = 13.528 (4) Å

  • b = 29.616 (10) Å

  • c = 7.074 (2) Å

  • V = 2834.2 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.984

  • 7036 measured reflections

  • 2171 independent reflections

  • 1343 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.117

  • S = 1.00

  • 2171 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 797 Friedel pairs

  • Flack parameter: 0.04 (13)

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our continuing project on the study of the interactions occurring between small molecules and proteins (Li et al., 2008; Zuo et al., 2008), we report here the synthesis and crystal structure of the title compound. In the crystal structure, the two ring systems are nearly coplanar, the diehderal angle between the aromatic rings being 4.2 (2)°.

Related literature top

For related structures, see: Li et al. (2008); Zuo et al. (2008).

Experimental top

To the solution of 2-(2,4-dichlorophenoxy)-N-phenethylacetamide (0.684 g, 2.0 mmol) in DMF (20 ml), caesium carbonate (0.787 g, 2.4 mmol) was added. The mixture was refluxed for 1.5 h. After completion of the reaction (by TLC monitoring), the DMF was removed under vacuum. Water (20 ml) was added into the residue to obtain a turbid solution and it was extracted by ethyl acetate (20 ml x 4). The combined organic layers were washed three times with 10 mL of 1 mol/L hydrochloric acid and saturated sodium chloride solution (10 ml x 3), dried over MgSO4. And then the mixture was filtered and the filtrate obtained was concentrated under reduced pressure to obtain the corresponding crude product. The product was purified by column chromatography on silica gel using ethyl/acetate = 1/5 as eluent (yield 75%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solutionof the solid dissolved in ethyl acetate/hexane at room temperature for 10 days.

Refinement top

All H atoms were palced in calculated positions and refined as riding, with C—H = 0.93–0.97\%A, and with Uiso(H)=1.2Ueq(C). The absolute structure was determined on the basis of 797Friedel pairs.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
7-Chloro-4-phenethyl-2H-1,4-benzoxazin-3(4H)-one top
Crystal data top
C16H14ClNO2F(000) = 1200
Mr = 287.73Dx = 1.349 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 809 reflections
a = 13.528 (4) Åθ = 2.6–18.3°
b = 29.616 (10) ŵ = 0.27 mm1
c = 7.074 (2) ÅT = 298 K
V = 2834.2 (15) Å3Block, colorless
Z = 80.12 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2171 independent reflections
Radiation source: fine-focus sealed tube1343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1316
Tmin = 0.968, Tmax = 0.984k = 3434
7036 measured reflectionsl = 87
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.04P)2 + 1.1309P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.15 e Å3
2171 reflectionsΔρmin = 0.16 e Å3
182 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0057 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 797 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (13)
Crystal data top
C16H14ClNO2V = 2834.2 (15) Å3
Mr = 287.73Z = 8
Orthorhombic, Iba2Mo Kα radiation
a = 13.528 (4) ŵ = 0.27 mm1
b = 29.616 (10) ÅT = 298 K
c = 7.074 (2) Å0.12 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2171 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1343 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.984Rint = 0.067
7036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.15 e Å3
S = 1.00Δρmin = 0.16 e Å3
2171 reflectionsAbsolute structure: Flack (1983), 797 Friedel pairs
182 parametersAbsolute structure parameter: 0.04 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The absolute structure was determined on the basis of 800 Friedel pairs.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42978 (9)0.23193 (3)0.4987 (3)0.1035 (6)
O10.4487 (2)0.39965 (8)0.4216 (4)0.0762 (10)
O20.3501 (2)0.47560 (9)0.0754 (4)0.0776 (10)
N10.3137 (2)0.40207 (11)0.1198 (5)0.0524 (9)
C10.3939 (3)0.28154 (13)0.3869 (7)0.0641 (12)
C20.3273 (4)0.28028 (16)0.2421 (9)0.0824 (15)
H20.30020.25300.20330.099*
C30.3007 (3)0.32009 (15)0.1536 (7)0.0754 (13)
H30.25480.31930.05570.091*
C40.3405 (3)0.36100 (13)0.2074 (6)0.0489 (10)
C50.4080 (3)0.36097 (13)0.3538 (6)0.0520 (10)
C60.4356 (3)0.32152 (12)0.4442 (6)0.0586 (11)
H60.48150.32210.54200.070*
C70.4403 (3)0.43887 (13)0.3107 (7)0.0608 (11)
H7A0.42790.46400.39560.073*
H7B0.50410.44420.25230.073*
C80.3644 (3)0.44065 (14)0.1590 (6)0.0556 (11)
C90.2368 (3)0.40386 (14)0.0274 (6)0.0640 (11)
H9A0.18540.38220.00270.077*
H9B0.20710.43370.02780.077*
C100.2775 (3)0.39363 (18)0.2246 (7)0.0811 (14)
H10A0.30030.36260.22850.097*
H10B0.33380.41300.24910.097*
C110.2016 (3)0.40062 (16)0.3760 (6)0.0581 (11)
C120.1471 (3)0.36580 (15)0.4534 (7)0.0721 (12)
H120.15730.33640.41200.087*
C130.0770 (3)0.37441 (18)0.5926 (8)0.0776 (14)
H130.04150.35070.64530.093*
C140.0605 (3)0.4166 (2)0.6510 (7)0.0797 (14)
H140.01220.42190.74190.096*
C150.1123 (4)0.45149 (17)0.5808 (7)0.0819 (14)
H150.10100.48070.62400.098*
C160.1827 (3)0.44326 (15)0.4432 (7)0.0724 (12)
H160.21850.46740.39460.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0963 (9)0.0644 (7)0.1497 (14)0.0060 (7)0.0085 (10)0.0330 (9)
O10.110 (2)0.0537 (15)0.064 (2)0.0103 (15)0.038 (2)0.0038 (16)
O20.088 (2)0.0731 (19)0.072 (3)0.0146 (16)0.0006 (19)0.0206 (18)
N10.048 (2)0.071 (2)0.038 (2)0.0065 (17)0.0033 (17)0.0021 (18)
C10.058 (2)0.057 (2)0.078 (3)0.002 (2)0.004 (3)0.009 (2)
C20.079 (3)0.061 (3)0.108 (4)0.015 (2)0.015 (3)0.005 (3)
C30.064 (3)0.079 (3)0.083 (3)0.010 (2)0.022 (2)0.005 (3)
C40.044 (2)0.057 (2)0.046 (2)0.0034 (19)0.000 (2)0.005 (2)
C50.050 (2)0.055 (2)0.051 (3)0.0021 (19)0.002 (2)0.007 (2)
C60.054 (2)0.060 (2)0.062 (3)0.000 (2)0.009 (2)0.001 (2)
C70.064 (2)0.058 (2)0.061 (3)0.006 (2)0.003 (2)0.001 (2)
C80.054 (3)0.064 (3)0.049 (3)0.011 (2)0.005 (2)0.006 (2)
C90.051 (2)0.094 (3)0.047 (3)0.016 (2)0.002 (2)0.004 (2)
C100.059 (2)0.132 (4)0.052 (3)0.015 (3)0.002 (2)0.009 (3)
C110.048 (2)0.087 (3)0.039 (3)0.006 (2)0.003 (2)0.007 (2)
C120.083 (3)0.074 (3)0.059 (3)0.000 (3)0.010 (3)0.002 (3)
C130.071 (3)0.097 (3)0.065 (3)0.023 (3)0.000 (3)0.021 (3)
C140.063 (3)0.127 (4)0.049 (3)0.001 (3)0.006 (2)0.000 (3)
C150.089 (3)0.088 (3)0.069 (3)0.007 (3)0.001 (3)0.023 (3)
C160.070 (3)0.082 (3)0.066 (3)0.021 (2)0.003 (3)0.000 (3)
Geometric parameters (Å, º) top
Cl1—C11.737 (4)C7—H7B0.9700
O1—C51.359 (4)C9—C101.529 (6)
O1—C71.406 (4)C9—H9A0.9700
O2—C81.208 (4)C9—H9B0.9700
N1—C81.361 (5)C10—C111.498 (6)
N1—C41.413 (5)C10—H10A0.9700
N1—C91.473 (5)C10—H10B0.9700
C1—C21.365 (7)C11—C161.373 (5)
C1—C61.372 (5)C11—C121.381 (6)
C2—C31.383 (6)C12—C131.390 (6)
C2—H20.9300C12—H120.9300
C3—C41.380 (5)C13—C141.335 (6)
C3—H30.9300C13—H130.9300
C4—C51.381 (5)C14—C151.344 (6)
C5—C61.383 (5)C14—H140.9300
C6—H60.9300C15—C161.383 (6)
C7—C81.486 (5)C15—H150.9300
C7—H7A0.9700C16—H160.9300
C5—O1—C7117.8 (3)N1—C9—C10112.6 (3)
C8—N1—C4120.2 (3)N1—C9—H9A109.1
C8—N1—C9118.0 (3)C10—C9—H9A109.1
C4—N1—C9121.5 (3)N1—C9—H9B109.1
C2—C1—C6121.1 (4)C10—C9—H9B109.1
C2—C1—Cl1120.2 (4)H9A—C9—H9B107.8
C6—C1—Cl1118.7 (4)C11—C10—C9112.2 (3)
C1—C2—C3119.3 (4)C11—C10—H10A109.2
C1—C2—H2120.4C9—C10—H10A109.2
C3—C2—H2120.4C11—C10—H10B109.2
C4—C3—C2121.5 (4)C9—C10—H10B109.2
C4—C3—H3119.3H10A—C10—H10B107.9
C2—C3—H3119.3C16—C11—C12116.7 (4)
C3—C4—C5117.7 (4)C16—C11—C10120.1 (4)
C3—C4—N1122.3 (4)C12—C11—C10123.1 (5)
C5—C4—N1120.0 (3)C11—C12—C13120.5 (4)
O1—C5—C4122.1 (4)C11—C12—H12119.7
O1—C5—C6116.1 (4)C13—C12—H12119.7
C4—C5—C6121.7 (4)C14—C13—C12120.4 (4)
C1—C6—C5118.8 (4)C14—C13—H13119.8
C1—C6—H6120.6C12—C13—H13119.8
C5—C6—H6120.6C13—C14—C15121.2 (5)
O1—C7—C8119.2 (3)C13—C14—H14119.4
O1—C7—H7A107.5C15—C14—H14119.4
C8—C7—H7A107.5C14—C15—C16118.9 (5)
O1—C7—H7B107.5C14—C15—H15120.5
C8—C7—H7B107.5C16—C15—H15120.5
H7A—C7—H7B107.0C11—C16—C15122.3 (4)
O2—C8—N1122.6 (4)C11—C16—H16118.9
O2—C8—C7119.7 (4)C15—C16—H16118.9
N1—C8—C7117.8 (4)
C6—C1—C2—C30.8 (7)C4—N1—C8—O2173.2 (4)
Cl1—C1—C2—C3179.2 (4)C9—N1—C8—O21.6 (6)
C1—C2—C3—C40.6 (8)C4—N1—C8—C76.6 (5)
C2—C3—C4—C50.3 (7)C9—N1—C8—C7178.6 (3)
C2—C3—C4—N1179.5 (4)O1—C7—C8—O2172.8 (4)
C8—N1—C4—C3171.0 (4)O1—C7—C8—N17.4 (6)
C9—N1—C4—C33.6 (6)C8—N1—C9—C1089.3 (5)
C8—N1—C4—C59.8 (5)C4—N1—C9—C1085.4 (5)
C9—N1—C4—C5175.6 (3)N1—C9—C10—C11173.5 (4)
C7—O1—C5—C415.7 (5)C9—C10—C11—C1681.2 (6)
C7—O1—C5—C6166.4 (4)C9—C10—C11—C1298.2 (5)
C3—C4—C5—O1177.5 (4)C16—C11—C12—C130.1 (6)
N1—C4—C5—O11.7 (5)C10—C11—C12—C13179.5 (4)
C3—C4—C5—C60.2 (6)C11—C12—C13—C141.1 (7)
N1—C4—C5—C6179.5 (4)C12—C13—C14—C151.6 (8)
C2—C1—C6—C50.8 (7)C13—C14—C15—C161.1 (8)
Cl1—C1—C6—C5179.2 (3)C12—C11—C16—C150.4 (7)
O1—C5—C6—C1177.4 (4)C10—C11—C16—C15179.0 (4)
C4—C5—C6—C10.5 (6)C14—C15—C16—C110.1 (7)
C5—O1—C7—C818.3 (5)

Experimental details

Crystal data
Chemical formulaC16H14ClNO2
Mr287.73
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)298
a, b, c (Å)13.528 (4), 29.616 (10), 7.074 (2)
V3)2834.2 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.968, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7036, 2171, 1343
Rint0.067
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.117, 1.00
No. of reflections2171
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16
Absolute structureFlack (1983), 797 Friedel pairs
Absolute structure parameter0.04 (13)

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This study was supported by the Research Fund for the Doctoral Program of Southwest University, China (grant No. SWUB2008027).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Z.-B., Luo, Y.-H., Dong, W.-L., Li, J. & Zuo, H. (2008). Acta Cryst. E64, o1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, H., Meng, L., Ghate, M., Hwang, K. H., Cho, Y. K., Chandrasekhar, S., Reddy, C. R. & Shin, D. S. (2008). Tetrahedron Lett. 49, 3827–3830.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds