organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Chloro-4-cyclo­hexyl-2H-1,4-benzoxazin-3(4H)-one

aCollege of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China, and bSchool of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
*Correspondence e-mail: lizhubo2007@163.com

(Received 5 March 2009; accepted 7 March 2009; online 14 March 2009)

In the crystal structure of title compound, C14H16ClNO2, the cyclo­hexyl ring is in a chair conformation. The molecules are connected into centrosymmetric dimers via weak C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Li et al. (2008[Li, Z.-B., Luo, Y.-H., Dong, W.-L., Li, J. & Zuo, H. (2008). Acta Cryst. E64, o1610.]); Zuo et al. (2008[Zuo, H., Meng, L., Ghate, M., Hwang, K. H., Cho, Y. K., Chandrasekhar, S., Reddy, C. R. & Shin, D. S. (2008). Tetrahedron Lett. 49, 3827-3830.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16ClNO2

  • Mr = 265.73

  • Monoclinic, P 21 /n

  • a = 9.0570 (8) Å

  • b = 5.7026 (5) Å

  • c = 25.289 (2) Å

  • β = 98.776 (1)°

  • V = 1290.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.985

  • 6491 measured reflections

  • 2284 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.02

  • 2284 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.97 2.44 3.407 (3) 174
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our project on the study of the interactions between small molecules and proteins (Li et al.; 2008 and Zuo et al.; 2008), we report here the synthesis and crystal structure of the title compound.

In the crystal structure of title compound, C14H16ClNO2, the cyclohexyl ring is in a chair conformation. The molecules are connected via two weak C-H···O hydrogen bonds into dimers which are located on centres of inversion.

Related literature top

For related structures, see: Li et al. (2008); Zuo et al. (2008).

Experimental top

To a solution of N-cyclohexyl-2-(2,3-dichlorophenoxy)acetamide(0.604 g, 2.0 mmol) in DMF (20 ml), caesium carbonate (0.787 g, 2.4 mmol) was added. The mixture was refluxed for 2 h. After completion of the reaction (by TLC monitoring), the DMF was removed under vacuum. Water (20 ml) was added into to obtain a turbid solution and it was extracted by ethyl acetate (20 ml x 4). The combined organic layer was washed by 1 mol/L of hydrochloric acid (10 ml x 3) and saturated sodium chloride solution (10 ml x 3), dried over MgSO~4~. And then the mixture was filtered and the filtrate obtained was concentrated under reduced pressure to obtain the corresponding crude product. The product was purified by column chromatography on silica gel using ethyl/acetate = 1/5 as eluent (yield 72%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solutionof the solid dissolved in ethyl acetate/hexane at room temperature for 10 days.

Refinement top

All H atoms were palced in calculated positions and refined as riding, with C—H = 0.93–0.97Å and with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
8-Chloro-4-cyclohexyl-2H-1,4-benzoxazin-3(4H)-one top
Crystal data top
C14H16ClNO2F(000) = 560
Mr = 265.73Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2520 reflections
a = 9.0570 (8) Åθ = 2.3–26.2°
b = 5.7026 (5) ŵ = 0.29 mm1
c = 25.289 (2) ÅT = 293 K
β = 98.776 (1)°Block, colorless
V = 1290.8 (2) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2284 independent reflections
Radiation source: fine-focus sealed tube1865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.967, Tmax = 0.985k = 36
6491 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.4617P]
where P = (Fo2 + 2Fc2)/3
2284 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H16ClNO2V = 1290.8 (2) Å3
Mr = 265.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0570 (8) ŵ = 0.29 mm1
b = 5.7026 (5) ÅT = 293 K
c = 25.289 (2) Å0.12 × 0.10 × 0.06 mm
β = 98.776 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2284 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1865 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.985Rint = 0.018
6491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
2284 reflectionsΔρmin = 0.25 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15312 (6)0.41531 (10)0.22217 (2)0.06310 (19)
O10.02832 (15)0.3875 (2)0.12160 (5)0.0532 (3)
O20.13476 (15)0.2157 (3)0.01039 (5)0.0598 (4)
N10.18465 (15)0.0827 (3)0.09632 (5)0.0423 (4)
C10.02699 (18)0.2077 (3)0.20691 (7)0.0440 (4)
C20.02332 (18)0.2168 (3)0.15761 (6)0.0409 (4)
C30.12797 (18)0.0547 (3)0.14560 (6)0.0389 (4)
C40.17380 (19)0.1228 (3)0.18194 (7)0.0447 (4)
H40.23980.23710.17360.054*
C50.1216 (2)0.1303 (4)0.23061 (7)0.0500 (5)
H50.15420.24860.25500.060*
C60.0224 (2)0.0345 (4)0.24338 (7)0.0486 (5)
H60.01120.02940.27630.058*
C70.0994 (2)0.1974 (3)0.05491 (7)0.0459 (4)
C80.0428 (2)0.3028 (4)0.06762 (7)0.0556 (5)
H8A0.07220.43150.04320.067*
H8B0.12130.18550.06210.067*
C90.33367 (19)0.0012 (3)0.08766 (7)0.0408 (4)
H90.35550.08330.05600.049*
C100.3391 (3)0.2597 (4)0.07334 (8)0.0605 (6)
H10A0.26180.29450.04340.073*
H10B0.32110.35470.10350.073*
C110.4918 (3)0.3181 (4)0.05863 (9)0.0836 (8)
H11A0.49730.48520.05210.100*
H11B0.50370.23700.02580.100*
C120.6170 (3)0.2494 (5)0.10186 (10)0.0847 (8)
H12A0.71180.27960.08980.102*
H12B0.61260.34470.13330.102*
C130.6084 (2)0.0065 (5)0.11650 (10)0.0701 (6)
H13A0.62470.10240.08620.084*
H13B0.68680.04200.14600.084*
C140.45753 (19)0.0669 (3)0.13235 (7)0.0482 (5)
H14A0.44510.01640.16480.058*
H14B0.45270.23370.13930.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0551 (3)0.0751 (4)0.0607 (3)0.0114 (3)0.0140 (2)0.0067 (3)
O10.0570 (8)0.0561 (8)0.0459 (7)0.0134 (6)0.0059 (6)0.0113 (6)
O20.0662 (9)0.0766 (10)0.0368 (7)0.0075 (7)0.0084 (6)0.0158 (7)
N10.0397 (8)0.0521 (9)0.0352 (7)0.0022 (7)0.0059 (6)0.0101 (6)
C10.0338 (9)0.0557 (11)0.0421 (9)0.0043 (8)0.0048 (7)0.0025 (8)
C20.0360 (9)0.0455 (10)0.0396 (9)0.0031 (8)0.0008 (7)0.0052 (8)
C30.0348 (8)0.0466 (10)0.0344 (8)0.0051 (7)0.0026 (7)0.0053 (7)
C40.0419 (9)0.0481 (11)0.0445 (9)0.0028 (8)0.0075 (8)0.0084 (8)
C50.0482 (10)0.0590 (12)0.0426 (10)0.0023 (9)0.0070 (8)0.0165 (9)
C60.0434 (10)0.0650 (13)0.0385 (9)0.0073 (9)0.0094 (8)0.0047 (9)
C70.0465 (10)0.0502 (11)0.0392 (10)0.0027 (8)0.0005 (8)0.0090 (8)
C80.0501 (11)0.0736 (14)0.0413 (10)0.0074 (10)0.0009 (8)0.0161 (10)
C90.0457 (10)0.0435 (10)0.0344 (8)0.0037 (8)0.0097 (7)0.0025 (7)
C100.0896 (16)0.0463 (12)0.0438 (10)0.0013 (11)0.0047 (10)0.0079 (9)
C110.143 (2)0.0577 (14)0.0608 (14)0.0345 (15)0.0488 (16)0.0026 (11)
C120.0815 (17)0.102 (2)0.0784 (16)0.0455 (16)0.0383 (14)0.0203 (15)
C130.0440 (11)0.0946 (18)0.0733 (14)0.0063 (12)0.0146 (10)0.0075 (13)
C140.0447 (10)0.0530 (12)0.0472 (10)0.0001 (9)0.0082 (8)0.0058 (9)
Geometric parameters (Å, º) top
Cl1—C11.7292 (19)C8—H8B0.9700
O1—C21.366 (2)C9—C141.516 (2)
O1—C81.435 (2)C9—C101.521 (3)
O2—C71.221 (2)C9—H90.9800
N1—C71.369 (2)C10—C111.523 (3)
N1—C31.427 (2)C10—H10A0.9700
N1—C91.479 (2)C10—H10B0.9700
C1—C61.378 (3)C11—C121.502 (4)
C1—C21.392 (2)C11—H11A0.9700
C2—C31.390 (2)C11—H11B0.9700
C3—C41.388 (2)C12—C131.510 (4)
C4—C51.385 (2)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.372 (3)C13—C141.521 (3)
C5—H50.9300C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—C81.500 (3)C14—H14A0.9700
C8—H8A0.9700C14—H14B0.9700
C2—O1—C8111.50 (15)N1—C9—H9105.3
C7—N1—C3119.02 (14)C14—C9—H9105.3
C7—N1—C9117.53 (14)C10—C9—H9105.3
C3—N1—C9123.43 (13)C9—C10—C11109.46 (18)
C6—C1—C2120.58 (17)C9—C10—H10A109.8
C6—C1—Cl1119.96 (14)C11—C10—H10A109.8
C2—C1—Cl1119.46 (14)C9—C10—H10B109.8
O1—C2—C3120.24 (15)C11—C10—H10B109.8
O1—C2—C1119.88 (16)H10A—C10—H10B108.2
C3—C2—C1119.87 (16)C12—C11—C10112.22 (17)
C4—C3—C2119.04 (15)C12—C11—H11A109.2
C4—C3—N1123.27 (16)C10—C11—H11A109.2
C2—C3—N1117.69 (14)C12—C11—H11B109.2
C5—C4—C3120.20 (17)C10—C11—H11B109.2
C5—C4—H4119.9H11A—C11—H11B107.9
C3—C4—H4119.9C11—C12—C13111.6 (2)
C6—C5—C4120.82 (17)C11—C12—H12A109.3
C6—C5—H5119.6C13—C12—H12A109.3
C4—C5—H5119.6C11—C12—H12B109.3
C5—C6—C1119.38 (16)C13—C12—H12B109.3
C5—C6—H6120.3H12A—C12—H12B108.0
C1—C6—H6120.3C12—C13—C14111.4 (2)
O2—C7—N1123.31 (17)C12—C13—H13A109.3
O2—C7—C8121.21 (16)C14—C13—H13A109.3
N1—C7—C8115.47 (15)C12—C13—H13B109.3
O1—C8—C7112.45 (14)C14—C13—H13B109.3
O1—C8—H8A109.1H13A—C13—H13B108.0
C7—C8—H8A109.1C9—C14—C13109.76 (16)
O1—C8—H8B109.1C9—C14—H14A109.7
C7—C8—H8B109.1C13—C14—H14A109.7
H8A—C8—H8B107.8C9—C14—H14B109.7
N1—C9—C14113.26 (14)C13—C14—H14B109.7
N1—C9—C10114.32 (16)H14A—C14—H14B108.2
C14—C9—C10112.25 (15)
C8—O1—C2—C336.1 (2)C3—N1—C7—O2175.04 (17)
C8—O1—C2—C1145.10 (16)C9—N1—C7—O26.4 (3)
C6—C1—C2—O1179.06 (16)C3—N1—C7—C85.2 (2)
Cl1—C1—C2—O10.7 (2)C9—N1—C7—C8173.32 (16)
C6—C1—C2—C32.1 (3)C2—O1—C8—C754.4 (2)
Cl1—C1—C2—C3178.15 (13)O2—C7—C8—O1145.51 (18)
O1—C2—C3—C4177.29 (15)N1—C7—C8—O134.2 (2)
C1—C2—C3—C43.9 (2)C7—N1—C9—C14130.77 (17)
O1—C2—C3—N13.6 (2)C3—N1—C9—C1447.7 (2)
C1—C2—C3—N1175.20 (15)C7—N1—C9—C1098.95 (19)
C7—N1—C3—C4155.62 (17)C3—N1—C9—C1082.6 (2)
C9—N1—C3—C425.9 (3)N1—C9—C10—C11172.94 (15)
C7—N1—C3—C225.3 (2)C14—C9—C10—C1156.3 (2)
C9—N1—C3—C2153.11 (16)C9—C10—C11—C1254.7 (2)
C2—C3—C4—C53.4 (3)C10—C11—C12—C1355.0 (3)
N1—C3—C4—C5175.67 (16)C11—C12—C13—C1455.3 (3)
C3—C4—C5—C61.0 (3)N1—C9—C14—C13171.56 (16)
C4—C5—C6—C10.8 (3)C10—C9—C14—C1357.1 (2)
C2—C1—C6—C50.3 (3)C12—C13—C14—C955.7 (2)
Cl1—C1—C6—C5179.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.972.443.407 (3)174
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16ClNO2
Mr265.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.0570 (8), 5.7026 (5), 25.289 (2)
β (°) 98.776 (1)
V3)1290.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.967, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
6491, 2284, 1865
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.02
No. of reflections2284
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.25

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.972.443.407 (3)173.6
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This study was supported by the Key Program Projects of the Municipal Natural Science Foundation of Chongqing, China (grant No. CSTC, 2007AC1042)

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Z.-B., Luo, Y.-H., Dong, W.-L., Li, J. & Zuo, H. (2008). Acta Cryst. E64, o1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, H., Meng, L., Ghate, M., Hwang, K. H., Cho, Y. K., Chandrasekhar, S., Reddy, C. R. & Shin, D. S. (2008). Tetrahedron Lett. 49, 3827–3830.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds