metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

(Benzo­nitrile-κN)chlorido[hydrido­tris­(pyrazol-1-yl-κN2)borato](tri­phenyl­phosphine-κP)ruthenium(II) ethanol solvate

aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, bDepartment of Natural Science, Taipei Municipal University of Education, Taipei 10048, Taiwan, and cDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: yhlo@mail.tmue.edu.tw

(Received 13 March 2009; accepted 19 March 2009; online 25 March 2009)

The reaction of [Ru(C9H10BN6)Cl(C18H15P)2] with benzo­nitrile leads to crystals of the title compound, [Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H5OH. In the crystal structure, the environment about the ruthenium metal center corresponds to a slightly distorted octa­hedron with an average N—Ru—N bite angle of the Tp ligand of 86.6 (2)°.

Related literature

For general background to the hydridotris(pyrazoly)borate anion and its use in the preparation of various transition metal complexes, see: Alcock et al. (1992[Alcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906-2908.]); Burrows et al. (2001[Burrows, A. D. (2001). CrystEngComm, 46, 1-5.]); Pavlik et al. (2005[Pavlik, S., Mereiter, K., Puchberger, M. &Kirchner, K. (2005). Organometallics, 24, 3561-3575.]); Slugovc et al. (1998[Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827-831.]); Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]). For Ru—N distances in other hydridotripyrazolyl­borate complexes, see: Gemel et al. (1996[Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998-4004.]); Slugovc et al. (1998[Slugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827-831.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H6O

  • Mr = 761.02

  • Triclinic, [P \overline 1]

  • a = 8.0008 (5) Å

  • b = 11.0195 (5) Å

  • c = 19.4246 (11) Å

  • α = 83.438 (4)°

  • β = 88.726 (4)°

  • γ = 88.920 (4)°

  • V = 1700.70 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 200 K

  • 0.24 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.864, Tmax = 0.988

  • 13842 measured reflections

  • 5819 independent reflections

  • 3804 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.122

  • S = 1.04

  • 5819 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydridotris(pyrazoly)borate anion (Tp,HB(pz)3) has been introduced by Trofimenko as a ligand in the preparation of various transition metal complexes (Trofimenko, 1993). Ruthenium(II) hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometric and catalytic transformations of organic molecules (Pavlik et al., 2005). The complex [Ru(Tp)Cl(PPh3)2] (Alcock et al., 1992) has been used as the starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphine substitutents (Burrows, 2001). On the other hand, Benzonitrile can form coordination complex with late transition metals that are both soluble in organic solvents and conveniently labile, e.g. PdCl2(PhCN)2. The benzonitrile ligands are readily displaced by stronger ligands, making benzonitrile complexes useful as synthetic intermediates.

In the crystal structure of the title compound the ruthenium metal center is coordinated by four N, one P and one Cl atom within slightly distorted octahedra. The average N—Ru—N bite angle to the Tp ligand amount to 86.6 (2)°. The three Ru—N(Tp) bond lengths of 2.063 (5), 2.069 (4) and 2.102 (5) Å) are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel et al. 1996; Slugovc et al. 1998). The Ru1—N7 and N7—C28 bond lengths of 1.991 (5) Å and 1.144 (7)Å correspond to single Ru—N and CN bonds. The crystal structure conatin additional ethanol molecules, which are connected to the chloro atom via weak O-H···Cl hydrogen bonding.

Related literature top

For general background to the hydridotris(pyrazoly)borate anion and its use in the preparation of various transition metal

complexes, see: Alcock et al. (1992); Burrows et al. (2001); Pavlik et al. (2005); Slugovc et al. (1998); Trofimenko et al. (1993). For Ru–N distances in other hydridotripyrazolylborate complexes, see: Gemel et al. (1996); Slugovc et al. (1998).

Experimental top

To a solution of [Ru(Tp)Cl(PPh3)2](3.95 g,4.50 mmol) in toulene (100 ml), an excess of benzonitrile (4.6 ml, 45.0 mmol) was added. The mixture was heated using a warm water bath for 30 min. A deep yellow color developed during this time. The reaction mixture was stirred for a further 2 h at room temperature (298 K). Then it was concentrated to approximately half of the volume and cooled to 273 K. The yellow precipitate was filtered off, washed with ethanol and ether and dried was dried under vacuum to give the title compound (I) (2.09 g, 65% yield).The bright-yellow crystals of (I) for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–ethanol containing free benzonitrile. The IR spectra display one medium band near 2214 cm-1, which was assigned to the ν(CN) vibration of the nitrile ligand. We have observed that the benzonitrile is lost readily in solution. Therefore, in all perations for the purification of the title compound, an excess of free nitrile was added in order to prevent the nitrile ligand dissociation.

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 - 0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C), B—H = 1.0 Å and Uiso(H) = 1.2Ueq(B), and O—H = 0.84 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (H atoms are shown as spheres of arbitrary radius).
(Benzonitrile-κN)chlorido[hydridotris(pyrazol-1-yl- κN2)borato](triphenylphosphine-κP)ruthenium(II) ethanol solvate top
Crystal data top
[Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H6OZ = 2
Mr = 761.02F(000) = 780
Triclinic, P1Dx = 1.486 Mg m3
a = 8.0008 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0195 (5) ÅCell parameters from 0 reflections
c = 19.4246 (11) Åθ = 0–0°
α = 83.438 (4)°µ = 0.63 mm1
β = 88.726 (4)°T = 200 K
γ = 88.920 (4)°Prism, yellow
V = 1700.70 (16) Å30.24 × 0.08 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
5819 independent reflections
Radiation source: fine-focus sealed tube3804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.9°
CCD rotation images, thick slices scansh = 79
Absorption correction: multi-scan
(Blessing, 1995)
k = 1213
Tmin = 0.864, Tmax = 0.988l = 2123
13842 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0432P)2]
where P = (Fo2 + 2Fc2)/3
5819 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H6Oγ = 88.920 (4)°
Mr = 761.02V = 1700.70 (16) Å3
Triclinic, P1Z = 2
a = 8.0008 (5) ÅMo Kα radiation
b = 11.0195 (5) ŵ = 0.63 mm1
c = 19.4246 (11) ÅT = 200 K
α = 83.438 (4)°0.24 × 0.08 × 0.02 mm
β = 88.726 (4)°
Data collection top
Nonius KappaCCD
diffractometer
5819 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3804 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.988Rint = 0.080
13842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.86 e Å3
5819 reflectionsΔρmin = 0.89 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.6437 (8)1.1216 (6)0.8145 (4)0.0217 (17)
H1'0.64121.19880.83700.026*
C10.4057 (7)0.8541 (6)0.8752 (3)0.0250 (15)
H10.36600.77460.87090.030*
C20.3573 (8)0.9230 (6)0.9274 (3)0.0307 (17)
H20.28120.90140.96480.037*
C30.4430 (8)1.0291 (6)0.9132 (3)0.0292 (17)
H30.43691.09630.93990.035*
C41.0191 (7)0.9563 (5)0.7700 (3)0.0235 (15)
H41.07540.89110.75070.028*
C51.0975 (8)1.0535 (5)0.7936 (3)0.0295 (17)
H51.21411.06850.79330.035*
C60.9697 (8)1.1240 (6)0.8178 (3)0.0298 (17)
H60.98301.19770.83790.036*
C70.4995 (7)1.0900 (5)0.6428 (3)0.0218 (15)
H70.47811.04200.60640.026*
C80.4638 (7)1.2139 (6)0.6407 (3)0.0305 (17)
H80.41641.26610.60370.037*
C90.5113 (7)1.2444 (5)0.7030 (3)0.0232 (15)
H90.50171.32340.71790.028*
C100.8767 (7)0.7020 (5)0.8753 (3)0.0194 (14)
C110.8356 (7)0.7871 (5)0.9212 (3)0.0252 (15)
H110.74500.84280.91100.030*
C120.9232 (8)0.7922 (6)0.9807 (3)0.0300 (17)
H120.89220.85061.01120.036*
C131.0560 (8)0.7129 (6)0.9964 (3)0.0341 (18)
H131.11560.71521.03800.041*
C141.1002 (8)0.6312 (6)0.9513 (4)0.0348 (18)
H141.19370.57810.96100.042*
C151.0116 (7)0.6240 (6)0.8916 (3)0.0299 (17)
H151.04360.56510.86150.036*
C160.5928 (7)0.5768 (5)0.8399 (3)0.0199 (14)
C170.6134 (8)0.5104 (5)0.9041 (3)0.0295 (16)
H170.70350.52900.93190.035*
C180.5063 (8)0.4179 (6)0.9288 (4)0.0333 (17)
H180.52500.37310.97280.040*
C190.3743 (8)0.3901 (5)0.8908 (4)0.0314 (17)
H190.30010.32700.90810.038*
C200.3503 (7)0.4553 (5)0.8265 (4)0.0282 (17)
H200.25920.43610.79940.034*
C210.4563 (7)0.5477 (5)0.8013 (3)0.0247 (15)
H210.43670.59210.75730.030*
C220.8730 (7)0.5888 (5)0.7502 (3)0.0190 (14)
C230.8347 (8)0.4663 (6)0.7473 (3)0.0335 (17)
H230.74230.43150.77360.040*
C240.9301 (8)0.3950 (6)0.7066 (4)0.0367 (18)
H240.90180.31210.70500.044*
C251.0658 (8)0.4430 (6)0.6682 (4)0.0336 (18)
H251.12930.39450.63940.040*
C261.1067 (8)0.5612 (6)0.6726 (3)0.0285 (16)
H261.20120.59480.64730.034*
C271.0130 (7)0.6332 (5)0.7133 (3)0.0256 (16)
H271.04540.71500.71590.031*
C280.8440 (8)0.8522 (5)0.6049 (3)0.0220 (15)
C290.9322 (7)0.8466 (5)0.5402 (3)0.0228 (15)
C301.1031 (8)0.8200 (5)0.5399 (4)0.0330 (17)
H301.16070.80580.58240.040*
C311.1880 (8)0.8145 (6)0.4785 (4)0.0381 (18)
H311.30410.79470.47830.046*
C321.1051 (9)0.8377 (5)0.4170 (4)0.0345 (18)
H321.16480.83480.37430.041*
C330.9364 (9)0.8650 (6)0.4167 (4)0.0363 (18)
H330.88020.88160.37400.044*
C340.8494 (8)0.8681 (6)0.4786 (3)0.0314 (17)
H340.73250.88500.47870.038*
C350.6349 (12)0.5821 (7)0.5823 (4)0.066 (3)
H35A0.55750.51890.60370.079*
H35B0.71230.60240.61820.079*
C360.7341 (11)0.5337 (7)0.5223 (5)0.077 (3)
H36A0.79810.46040.53990.115*
H36B0.81100.59650.50160.115*
H36C0.65660.51330.48710.115*
Cl10.40407 (18)0.80198 (13)0.69429 (8)0.0259 (4)
N10.5147 (6)0.9129 (4)0.8316 (3)0.0187 (12)
N20.5372 (6)1.0235 (4)0.8556 (3)0.0216 (12)
N30.8537 (6)0.9662 (4)0.7779 (2)0.0201 (12)
N40.8238 (6)1.0713 (4)0.8082 (3)0.0218 (12)
N50.5673 (5)1.0477 (4)0.7025 (3)0.0185 (12)
N60.5746 (6)1.1432 (4)0.7404 (3)0.0213 (12)
N70.7767 (6)0.8556 (4)0.6573 (3)0.0190 (12)
O20.5442 (7)0.6869 (5)0.5561 (3)0.0617 (16)
H2'0.48950.71420.58860.092*
P10.74469 (19)0.68826 (14)0.80077 (9)0.0189 (4)
Ru10.65206 (6)0.87432 (4)0.74538 (3)0.01676 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.027 (4)0.015 (4)0.025 (5)0.004 (3)0.004 (4)0.008 (3)
C10.022 (3)0.027 (4)0.026 (4)0.002 (3)0.000 (3)0.002 (3)
C20.034 (4)0.039 (4)0.019 (4)0.002 (3)0.007 (3)0.000 (3)
C30.031 (4)0.040 (4)0.018 (4)0.014 (3)0.003 (3)0.014 (3)
C40.014 (3)0.025 (4)0.031 (4)0.004 (3)0.001 (3)0.002 (3)
C50.021 (3)0.034 (4)0.034 (5)0.004 (3)0.010 (3)0.001 (3)
C60.031 (4)0.031 (4)0.029 (4)0.012 (3)0.010 (3)0.004 (3)
C70.024 (3)0.023 (4)0.019 (4)0.001 (3)0.007 (3)0.004 (3)
C80.031 (4)0.032 (4)0.026 (4)0.006 (3)0.006 (3)0.007 (3)
C90.022 (3)0.012 (3)0.034 (4)0.000 (3)0.001 (3)0.002 (3)
C100.019 (3)0.019 (3)0.019 (4)0.006 (3)0.001 (3)0.003 (3)
C110.024 (3)0.029 (4)0.022 (4)0.001 (3)0.003 (3)0.002 (3)
C120.032 (4)0.040 (4)0.020 (4)0.003 (3)0.000 (3)0.010 (3)
C130.032 (4)0.050 (5)0.019 (4)0.002 (3)0.009 (3)0.002 (4)
C140.026 (4)0.036 (4)0.041 (5)0.011 (3)0.012 (4)0.000 (4)
C150.029 (4)0.033 (4)0.027 (4)0.006 (3)0.007 (3)0.003 (3)
C160.023 (3)0.016 (3)0.019 (4)0.004 (3)0.006 (3)0.003 (3)
C170.033 (4)0.028 (4)0.027 (4)0.007 (3)0.004 (3)0.002 (3)
C180.040 (4)0.033 (4)0.025 (4)0.006 (3)0.003 (4)0.004 (3)
C190.032 (4)0.024 (4)0.036 (5)0.005 (3)0.011 (4)0.005 (3)
C200.021 (3)0.023 (4)0.040 (5)0.003 (3)0.001 (3)0.004 (3)
C210.028 (3)0.023 (4)0.023 (4)0.005 (3)0.005 (3)0.001 (3)
C220.022 (3)0.015 (3)0.021 (4)0.003 (3)0.003 (3)0.005 (3)
C230.034 (4)0.041 (4)0.026 (4)0.000 (3)0.005 (3)0.009 (4)
C240.040 (4)0.028 (4)0.043 (5)0.004 (3)0.005 (4)0.007 (4)
C250.044 (4)0.030 (4)0.028 (5)0.008 (3)0.002 (4)0.012 (3)
C260.026 (3)0.031 (4)0.028 (4)0.002 (3)0.012 (3)0.002 (3)
C270.023 (3)0.023 (4)0.032 (4)0.002 (3)0.000 (3)0.006 (3)
C280.025 (3)0.024 (4)0.018 (4)0.002 (3)0.005 (3)0.004 (3)
C290.026 (3)0.019 (3)0.023 (4)0.002 (3)0.003 (3)0.001 (3)
C300.037 (4)0.029 (4)0.032 (5)0.004 (3)0.003 (4)0.001 (3)
C310.029 (4)0.045 (5)0.039 (5)0.009 (3)0.007 (4)0.002 (4)
C320.046 (4)0.033 (4)0.026 (5)0.013 (3)0.011 (4)0.011 (3)
C330.046 (4)0.047 (5)0.018 (4)0.020 (4)0.004 (4)0.005 (4)
C340.024 (3)0.046 (4)0.023 (4)0.005 (3)0.002 (3)0.001 (4)
C350.105 (8)0.028 (5)0.065 (7)0.005 (5)0.042 (6)0.002 (5)
C360.087 (7)0.049 (6)0.100 (9)0.022 (5)0.035 (7)0.028 (6)
Cl10.0209 (8)0.0269 (9)0.0301 (11)0.0032 (7)0.0085 (8)0.0020 (8)
N10.016 (3)0.019 (3)0.020 (3)0.002 (2)0.006 (2)0.002 (2)
N20.024 (3)0.024 (3)0.018 (3)0.001 (2)0.001 (3)0.005 (2)
N30.022 (3)0.022 (3)0.016 (3)0.001 (2)0.001 (2)0.001 (2)
N40.023 (3)0.019 (3)0.024 (3)0.000 (2)0.003 (3)0.009 (2)
N50.016 (3)0.017 (3)0.023 (3)0.002 (2)0.004 (2)0.005 (2)
N60.027 (3)0.016 (3)0.020 (3)0.000 (2)0.000 (3)0.002 (2)
N70.019 (3)0.017 (3)0.020 (3)0.002 (2)0.006 (3)0.001 (3)
O20.066 (4)0.073 (4)0.046 (4)0.007 (3)0.011 (3)0.009 (3)
P10.0193 (8)0.0204 (9)0.0169 (10)0.0008 (7)0.0017 (8)0.0011 (8)
Ru10.0162 (2)0.0176 (3)0.0165 (3)0.00072 (19)0.0021 (2)0.0017 (2)
Geometric parameters (Å, º) top
B1—N21.530 (9)C20—C211.377 (8)
B1—N41.541 (8)C20—H200.9500
B1—N61.545 (8)C21—H210.9500
B1—H1'1.0000C22—C271.383 (8)
C1—N11.326 (8)C22—C231.397 (8)
C1—C21.380 (8)C22—P11.838 (6)
C1—H10.9500C23—C241.384 (8)
C2—C31.365 (9)C23—H230.9500
C2—H20.9500C24—C251.382 (9)
C3—N21.341 (7)C24—H240.9500
C3—H30.9500C25—C261.361 (8)
C4—N31.332 (7)C25—H250.9500
C4—C51.378 (8)C26—C271.382 (8)
C4—H40.9500C26—H260.9500
C5—C61.379 (8)C27—H270.9500
C5—H50.9500C28—N71.144 (7)
C6—N41.339 (7)C28—C291.436 (9)
C6—H60.9500C29—C341.375 (8)
C7—N51.323 (7)C29—C301.393 (8)
C7—C81.385 (8)C30—C311.366 (9)
C7—H70.9500C30—H300.9500
C8—C91.356 (8)C31—C321.375 (8)
C8—H80.9500C31—H310.9500
C9—N61.355 (7)C32—C331.377 (9)
C9—H90.9500C32—H320.9500
C10—C151.386 (7)C33—C341.380 (9)
C10—C111.396 (8)C33—H330.9500
C10—P11.833 (6)C34—H340.9500
C11—C121.372 (8)C35—O21.403 (8)
C11—H110.9500C35—C361.535 (11)
C12—C131.380 (8)C35—H35A0.9900
C12—H120.9500C35—H35B0.9900
C13—C141.364 (8)C36—H36A0.9800
C13—H130.9500C36—H36B0.9800
C14—C151.383 (8)C36—H36C0.9800
C14—H140.9500Cl1—Ru12.4259 (14)
C15—H150.9500N1—N21.371 (6)
C16—C171.383 (8)N1—Ru12.063 (5)
C16—C211.400 (7)N3—N41.373 (6)
C16—P11.834 (6)N3—Ru12.069 (4)
C17—C181.381 (8)N5—N61.354 (6)
C17—H170.9500N5—Ru12.102 (5)
C18—C191.362 (8)N7—Ru11.991 (5)
C18—H180.9500O2—H2'0.8400
C19—C201.383 (8)P1—Ru12.3205 (16)
C19—H190.9500
N2—B1—N4108.7 (5)C24—C25—H25120.7
N2—B1—N6107.5 (5)C25—C26—C27121.1 (6)
N4—B1—N6107.0 (5)C25—C26—H26119.5
N2—B1—H1'111.1C27—C26—H26119.5
N4—B1—H1'111.1C26—C27—C22121.5 (6)
N6—B1—H1'111.1C26—C27—H27119.3
N1—C1—C2111.4 (6)C22—C27—H27119.3
N1—C1—H1124.3N7—C28—C29178.6 (7)
C2—C1—H1124.3C34—C29—C30119.9 (6)
C3—C2—C1104.6 (6)C34—C29—C28120.5 (5)
C3—C2—H2127.7C30—C29—C28119.6 (6)
C1—C2—H2127.7C31—C30—C29120.0 (7)
N2—C3—C2109.1 (6)C31—C30—H30120.0
N2—C3—H3125.5C29—C30—H30120.0
C2—C3—H3125.5C30—C31—C32119.9 (6)
N3—C4—C5110.9 (5)C30—C31—H31120.1
N3—C4—H4124.5C32—C31—H31120.1
C5—C4—H4124.5C31—C32—C33120.6 (7)
C6—C5—C4104.9 (5)C31—C32—H32119.7
C6—C5—H5127.6C33—C32—H32119.7
C4—C5—H5127.6C32—C33—C34119.8 (6)
N4—C6—C5108.8 (5)C32—C33—H33120.1
N4—C6—H6125.6C34—C33—H33120.1
C5—C6—H6125.6C29—C34—C33119.8 (6)
N5—C7—C8110.7 (5)C29—C34—H34120.1
N5—C7—H7124.7C33—C34—H34120.1
C8—C7—H7124.7O2—C35—C36108.7 (7)
C9—C8—C7105.0 (6)O2—C35—H35A110.0
C9—C8—H8127.5C36—C35—H35A110.0
C7—C8—H8127.5O2—C35—H35B110.0
N6—C9—C8108.6 (5)C36—C35—H35B110.0
N6—C9—H9125.7H35A—C35—H35B108.3
C8—C9—H9125.7C35—C36—H36A109.5
C15—C10—C11117.4 (5)C35—C36—H36B109.5
C15—C10—P1122.4 (5)H36A—C36—H36B109.5
C11—C10—P1120.1 (4)C35—C36—H36C109.5
C12—C11—C10121.4 (5)H36A—C36—H36C109.5
C12—C11—H11119.3H36B—C36—H36C109.5
C10—C11—H11119.3C1—N1—N2105.8 (5)
C11—C12—C13120.4 (6)C1—N1—Ru1136.1 (4)
C11—C12—H12119.8N2—N1—Ru1118.0 (4)
C13—C12—H12119.8C3—N2—N1109.1 (5)
C14—C13—C12118.8 (6)C3—N2—B1129.9 (5)
C14—C13—H13120.6N1—N2—B1120.8 (5)
C12—C13—H13120.6C4—N3—N4106.3 (5)
C13—C14—C15121.4 (6)C4—N3—Ru1134.6 (4)
C13—C14—H14119.3N4—N3—Ru1118.6 (3)
C15—C14—H14119.3C6—N4—N3109.2 (5)
C14—C15—C10120.6 (6)C6—N4—B1129.9 (5)
C14—C15—H15119.7N3—N4—B1120.0 (4)
C10—C15—H15119.7C7—N5—N6106.7 (4)
C17—C16—C21117.1 (6)C7—N5—Ru1133.9 (4)
C17—C16—P1123.2 (5)N6—N5—Ru1119.3 (4)
C21—C16—P1119.5 (5)N5—N6—C9109.0 (5)
C18—C17—C16121.8 (6)N5—N6—B1119.1 (4)
C18—C17—H17119.1C9—N6—B1132.0 (5)
C16—C17—H17119.1C28—N7—Ru1175.5 (5)
C19—C18—C17120.7 (7)C35—O2—H2'109.5
C19—C18—H18119.7C10—P1—C16100.4 (3)
C17—C18—H18119.7C10—P1—C22102.2 (3)
C18—C19—C20118.8 (6)C16—P1—C2299.5 (3)
C18—C19—H19120.6C10—P1—Ru1113.87 (19)
C20—C19—H19120.6C16—P1—Ru1119.88 (18)
C21—C20—C19121.0 (6)C22—P1—Ru1118.0 (2)
C21—C20—H20119.5N7—Ru1—N1173.57 (19)
C19—C20—H20119.5N7—Ru1—N389.01 (19)
C20—C21—C16120.7 (6)N1—Ru1—N390.33 (18)
C20—C21—H21119.7N7—Ru1—N589.35 (19)
C16—C21—H21119.7N1—Ru1—N584.21 (19)
C27—C22—C23117.2 (6)N3—Ru1—N585.23 (17)
C27—C22—P1120.7 (4)N7—Ru1—P194.34 (14)
C23—C22—P1122.1 (5)N1—Ru1—P192.08 (13)
C24—C23—C22120.7 (7)N3—Ru1—P192.67 (13)
C24—C23—H23119.7N5—Ru1—P1175.72 (15)
C22—C23—H23119.7N7—Ru1—Cl188.69 (13)
C23—C24—C25120.9 (6)N1—Ru1—Cl190.79 (13)
C23—C24—H24119.6N3—Ru1—Cl1169.39 (13)
C25—C24—H24119.6N5—Ru1—Cl184.39 (13)
C26—C25—C24118.6 (6)P1—Ru1—Cl197.83 (5)
C26—C25—H25120.7

Experimental details

Crystal data
Chemical formula[Ru(C9H10BN6)Cl(C18H15P)(C7H5N)]·C2H6O
Mr761.02
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.0008 (5), 11.0195 (5), 19.4246 (11)
α, β, γ (°)83.438 (4), 88.726 (4), 88.920 (4)
V3)1700.70 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.24 × 0.08 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.864, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
13842, 5819, 3804
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.122, 1.04
No. of reflections5819
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.89

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC 97–2113-M-036–001-MY2) and in part from the Project of the Specific Research Fields in Taipei Municipal University of Education, Taiwan. We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University, Taiwan) for his assistance with the crystal structure analysis and the Project of the Specific Research Fields in Chung Yuan Christian University, Taiwan for support (grant CYCU-97-CR—CH).

References

First citationAlcock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurrows, A. D. (2001). CrystEngComm, 46, 1–5.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 16, 3998–4004.  CSD CrossRef Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlik, S., Mereiter, K., Puchberger, M. &Kirchner, K. (2005). Organometallics, 24, 3561–3575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlugovc, C., Mereiter, K., Schmid, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds