organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-bromo­phen­yl)-8-tri­fluoro­methyl-3,4-di­hydropyrimido[1,2-a][1,3,5]triazin-6(5H)-one

aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
*Correspondence e-mail: phada@nus.edu.sg

(Received 6 February 2009; accepted 2 March 2009; online 6 March 2009)

The title compound, C13H9BrF3N5O, crystallizes with two independent mol­ecules in the asymmetric unit. The pyrimidine rings of the mol­ecules are planar [maximum deviations 0.053 (3) and 0.012 (3) Å], while the triazine rings adopt flattened half-boat conformations with the p-bromo­phenyl rings in the flagpole positions. The crystal packing is stabilized by a three-dimensional network of inter­molecular N—H⋯N, N—H⋯O and N—H⋯F hydrogen bonds.

Related literature

For the crystal structure of 7,7-dimethyl-2-phenyl-6,7-di­hydro-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine, see: Dolzhenko et al. (2007[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007). Acta Cryst. E63, o2796.]). For the preparation of benzo-fused analogues, see: Dolzhenko et al. (2008a[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008a). J. Heterocycl. Chem. 45, 173-176.]). For the previous report in this series, see: Dolzhenko et al. (2008b[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008b). Tetrahedron Lett. 49, 7180-7183.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrF3N5O

  • Mr = 388.16

  • Orthorhombic, P n a 21

  • a = 10.0531 (4) Å

  • b = 29.9108 (13) Å

  • c = 10.1945 (4) Å

  • V = 3065.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 223 K

  • 0.46 × 0.34 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.367, Tmax = 0.612 (expected range = 0.348–0.580)

  • 20728 measured reflections

  • 6287 independent reflections

  • 4979 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.138

  • S = 1.04

  • 6287 reflections

  • 432 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.50 e Å−3

  • Δρmin = −0.74 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2044 Friedel pairs

  • Flack parameter: 0.011 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.87 (2) 2.15 (2) 3.005 (5) 171 (5)
N5—H5A⋯O2ii 0.895 (14) 2.09 (3) 2.905 (5) 152 (5)
N5—H5B⋯N4i 0.892 (14) 2.25 (2) 3.095 (6) 159 (5)
N5—H5B⋯F1i 0.892 (14) 2.46 (4) 3.054 (5) 124 (4)
N6—H6N⋯N7iii 0.902 (19) 2.10 (3) 2.967 (5) 160 (5)
N10—H10A⋯O1 0.89 (2) 2.03 (3) 2.885 (5) 162 (5)
N10—H10B⋯N9iii 0.90 (2) 2.15 (2) 3.041 (5) 171 (5)
Symmetry codes: (i) [-x+2, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was synthesized via thermal cyclocondensation of 6-oxo-4-trifluoromethyl-1,6-dihydropyrimidin-2-yl guanidine with p-bromobenzaldehyde (Fig.1) using the methodology that we successfully applied previously for the preparation of its benzofused analogues (Dolzhenko et al., 2008a). In general, the synthesized compound might be involved in tautomerism with four possible tautomers (Fig. 2). However, only one tautomeric form viz. 2-amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6H-pyrimido[1,2-a][1,3,5]triazin-6-one was found in the crystal.

The compound crystallized with two independent molecules (A and B) in the asymmetric unit (Fig. 3). The pyrimidine rings in the molecules are planar with maximum deviations 0.0525 (26) Å (C3) and 0.0118 (32) Å (C18) from the planes C3/N3/C4—C6/N4 and C16/N8/C17—C19/N9 of molecules A and B, respectively. Similarly to structurally related 7,7-dimethyl-2-phenyl-6,7-dyhydro-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine (Dolzhenko et al., 2007), the triazine rings in the molecules adopt flattened half-boat conformations with atoms N2 and N7 at the sterns and sp3-hybridized atoms C1 and C14 at the bows with p-bromophenyl rings as flagpoles. However, the molecules are significantly different in the geometry at bridgehead nitrogen atoms (N3 and N8) and sp3-hybridized atoms C1 and C14 of the triazine rings.The torsion angles C4—N3—C1—N1 and C17—N8—C14—N6 are 136.7 (4)° and 150.4 (3)°, respectively. In molecule B, the bond N8—C14 is located almost in the phenyl ring (C21—C26) plane: the torsion angle N8—C14—C21—C26 is 2.6 (5)°. The corresponding torsion angle N3—C1—C8—C9 of molecule A is 42.5 (6)°. The N1—C2, N2—C2, N5—C2 bond distances in A and N6—C15, N7—C15, N10—C15 in B are similar that suggests guanidine-like electron delocalization in N1/N2/N5/C2 and N6/N7/N10/C15 fragments of the molecules.

The crystal packing is stabilized by three-dimensional network of intramolecular N—H···N, N—H···O and N—H···F hydrogen bonds (Table 1, Fig. 4).

Related literature top

For the crystal structure of 7,7-dimethyl-2-phenyl-6,7-dyhydro-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine, see: Dolzhenko et al. (2007). For the preparation of benzo-fused analogues, see: Dolzhenko et al. (2008a). For the previous report in the series, see: Dolzhenko et al. (2008b).

Experimental top

2-Amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6H-pyrimido[1,2-a][1,3,5]triazin-6-one was synthesized from 6-oxo-4-trifluoromethyl-1,6-dihydropyrimidin-2-yl guanidine and p-bromobenzaldehyde according to general method reported by Dolzhenko et al. (2008a). Single crystals suitable for crystallographic analysis were grown by slow evaporation of the solution in ethyl acetate / methanol.

Refinement top

N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C—H = 0.94 or 0.99 Å) and were constrained in a riding motion approximation with Uiso(H) = 1.2Ueq(C). One of the BrC6H4 parts is disordered into two parts at 89:11 ratio.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis of 2-amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6H-pyrimido[1,2-a][1,3,5]triazin-6-one
[Figure 2] Fig. 2. Tautomerism in the title compound
[Figure 3] Fig. 3. The molecular structure of 2-amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6H-pyrimido[1,2-a][1,3,5]triazin-6-one with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. Molecular parking in the crystal, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-Amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4- dihydropyrimido[1,2-a][1,3,5]triazin-6(5H)-one top
Crystal data top
C13H9BrF3N5ODx = 1.682 Mg m3
Mr = 388.16Melting point: 516 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5069 reflections
a = 10.0531 (4) Åθ = 2.4–25.1°
b = 29.9108 (13) ŵ = 2.73 mm1
c = 10.1945 (4) ÅT = 223 K
V = 3065.4 (2) Å3Block, colourless
Z = 80.46 × 0.34 × 0.20 mm
F(000) = 1536
Data collection top
Bruker SMART APEX CCD
diffractometer
6287 independent reflections
Radiation source: fine-focus sealed tube4979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1213
Tmin = 0.367, Tmax = 0.612k = 3838
20728 measured reflectionsl = 1311
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0646P)2 + 2.1384P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6287 reflectionsΔρmax = 1.50 e Å3
432 parametersΔρmin = 0.74 e Å3
16 restraintsAbsolute structure: Flack (1983), 2044 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (10)
Crystal data top
C13H9BrF3N5OV = 3065.4 (2) Å3
Mr = 388.16Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 10.0531 (4) ŵ = 2.73 mm1
b = 29.9108 (13) ÅT = 223 K
c = 10.1945 (4) Å0.46 × 0.34 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6287 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4979 reflections with I > 2σ(I)
Tmin = 0.367, Tmax = 0.612Rint = 0.037
20728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138Δρmax = 1.50 e Å3
S = 1.04Δρmin = 0.74 e Å3
6287 reflectionsAbsolute structure: Flack (1983), 2044 Friedel pairs
432 parametersAbsolute structure parameter: 0.011 (10)
16 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.0316 (3)0.34878 (10)1.2353 (3)0.0346 (7)
F10.9317 (4)0.36022 (11)1.7842 (4)0.0634 (10)
F20.8409 (4)0.30866 (11)1.6709 (4)0.0750 (12)
F30.7371 (4)0.37004 (16)1.7065 (5)0.0873 (14)
N11.0194 (3)0.47967 (11)1.2317 (4)0.0259 (7)
H1N1.012 (5)0.4927 (15)1.156 (3)0.031*
N20.9826 (3)0.48272 (10)1.4583 (3)0.0237 (7)
N31.0181 (3)0.41352 (10)1.3521 (3)0.0232 (7)
N40.9342 (4)0.41721 (11)1.5665 (4)0.0290 (7)
N50.9597 (4)0.54572 (11)1.3299 (4)0.0335 (8)
H5A0.919 (5)0.5568 (15)1.401 (3)0.040*
H5B0.982 (5)0.5632 (14)1.262 (4)0.040*
C11.0910 (4)0.43826 (13)1.2510 (4)0.0250 (8)
H1A1.09040.42091.16830.030*
C20.9892 (4)0.50251 (13)1.3412 (4)0.0249 (8)
C30.9789 (4)0.43766 (13)1.4607 (4)0.0258 (8)
C40.9958 (4)0.36750 (13)1.3367 (5)0.0288 (9)
C50.9359 (5)0.34747 (15)1.4486 (5)0.0387 (10)
H50.91220.31711.44780.046*
C60.9137 (5)0.37273 (15)1.5558 (5)0.0358 (10)
C70.8558 (7)0.35237 (18)1.6796 (6)0.0542 (15)
C81.2338 (4)0.44558 (14)1.2947 (5)0.0279 (9)
C91.3053 (5)0.41197 (16)1.3543 (6)0.0454 (13)
H91.26540.38381.36640.054*
C101.4348 (5)0.41866 (18)1.3968 (6)0.0519 (14)
H101.48260.39541.43720.062*
C111.4917 (4)0.45984 (18)1.3788 (6)0.0441 (12)
C121.4249 (5)0.49351 (18)1.3178 (6)0.0450 (12)
H121.46600.52141.30440.054*
C131.2959 (5)0.48627 (15)1.2758 (5)0.0362 (10)
H131.24950.50951.23360.043*
Br11.66612 (4)0.47071 (3)1.44122 (8)0.0697 (2)
O20.7222 (3)0.09824 (9)0.9889 (3)0.0338 (7)
F41.2813 (4)0.10516 (13)1.0040 (5)0.0782 (13)
F51.1837 (3)0.05015 (8)1.0941 (4)0.0578 (10)
F61.2446 (3)0.10589 (11)1.2081 (5)0.0631 (10)
N60.7243 (3)0.22885 (11)1.0553 (4)0.0271 (8)
H6N0.653 (3)0.2463 (13)1.073 (5)0.032*
N70.9576 (3)0.22901 (10)1.0690 (4)0.0261 (7)
N80.8395 (3)0.16152 (10)1.0287 (4)0.0237 (7)
N91.0675 (3)0.16188 (11)1.0790 (4)0.0288 (8)
N100.8364 (4)0.29270 (11)1.1091 (4)0.0319 (8)
H10A0.909 (3)0.3050 (15)1.144 (5)0.038*
H10B0.762 (3)0.3090 (15)1.104 (6)0.038*
C201.1928 (5)0.09342 (14)1.0926 (6)0.0377 (11)
C140.7273 (4)0.18807 (12)0.9806 (5)0.0258 (9)
H140.64430.17130.99850.031*
C150.8407 (4)0.25037 (12)1.0759 (4)0.0231 (8)
C160.9555 (4)0.18357 (12)1.0582 (4)0.0246 (8)
C170.8279 (4)0.11509 (13)1.0201 (4)0.0255 (8)
C180.9505 (4)0.09218 (13)1.0451 (5)0.0287 (9)
H180.95400.06081.04410.034*
C191.0602 (4)0.11631 (13)1.0699 (4)0.0291 (9)
Br20.74894 (14)0.22662 (3)0.38715 (10)0.0924 (5)0.899 (3)
C210.7359 (4)0.19636 (19)0.8349 (3)0.0312 (13)0.899 (3)
C220.6379 (4)0.22284 (19)0.7782 (4)0.0475 (14)0.899 (3)
H220.56950.23480.83040.057*0.899 (3)
C230.6409 (4)0.23160 (16)0.6443 (4)0.0599 (19)0.899 (3)
H230.57470.24950.60600.072*0.899 (3)
C240.7420 (4)0.21389 (14)0.5671 (3)0.0509 (16)0.899 (3)
C250.8400 (4)0.18741 (14)0.6238 (3)0.0621 (19)0.899 (3)
H250.90840.17540.57160.075*0.899 (3)
C260.8370 (4)0.17865 (16)0.7577 (3)0.0463 (16)0.899 (3)
H260.90330.16070.79600.056*0.899 (3)
Br30.8608 (7)0.21715 (19)0.3838 (6)0.054 (2)*0.101 (3)
C21A0.756 (6)0.197 (3)0.829 (2)0.045*0.101 (3)
C22A0.668 (5)0.219 (3)0.747 (3)0.062*0.101 (3)
H22A0.58670.22980.78060.075*0.101 (3)
C23A0.699 (4)0.225 (2)0.616 (2)0.062*0.101 (3)
H23A0.63920.24020.56010.075*0.101 (3)
C24A0.818 (3)0.2090 (17)0.5660 (15)0.062*0.101 (3)
C25A0.907 (4)0.1867 (17)0.6480 (18)0.062*0.101 (3)
H25A0.98760.17580.61450.075*0.101 (3)
C26A0.875 (5)0.181 (2)0.7796 (19)0.062*0.101 (3)
H26A0.93510.16540.83500.075*0.101 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0404 (17)0.0260 (14)0.0375 (18)0.0012 (12)0.0011 (14)0.0105 (13)
F10.103 (3)0.0442 (17)0.0428 (19)0.0128 (17)0.0068 (19)0.0091 (14)
F20.119 (3)0.0427 (17)0.063 (2)0.039 (2)0.021 (2)0.0051 (17)
F30.071 (3)0.101 (3)0.090 (3)0.004 (2)0.044 (2)0.032 (3)
N10.0288 (17)0.0241 (16)0.0247 (18)0.0042 (13)0.0028 (14)0.0010 (14)
N20.0241 (15)0.0214 (15)0.0255 (19)0.0018 (12)0.0019 (14)0.0007 (14)
N30.0235 (16)0.0197 (14)0.0265 (19)0.0033 (12)0.0003 (13)0.0010 (13)
N40.0333 (18)0.0281 (16)0.0258 (18)0.0022 (14)0.0025 (15)0.0023 (15)
N50.047 (2)0.0229 (17)0.031 (2)0.0074 (15)0.0066 (18)0.0020 (16)
C10.0256 (19)0.0257 (19)0.024 (2)0.0051 (15)0.0029 (15)0.0009 (16)
C20.0203 (18)0.0254 (18)0.029 (2)0.0001 (14)0.0008 (16)0.0024 (16)
C30.0210 (17)0.0277 (19)0.029 (2)0.0016 (14)0.0037 (16)0.0034 (17)
C40.027 (2)0.0196 (18)0.040 (2)0.0005 (15)0.0060 (18)0.0055 (18)
C50.047 (2)0.028 (2)0.041 (3)0.0088 (18)0.003 (2)0.002 (2)
C60.034 (2)0.032 (2)0.041 (3)0.0076 (18)0.000 (2)0.005 (2)
C70.071 (4)0.041 (3)0.050 (4)0.013 (3)0.016 (3)0.005 (3)
C80.027 (2)0.031 (2)0.026 (2)0.0038 (16)0.0029 (17)0.0034 (17)
C90.034 (2)0.037 (2)0.065 (4)0.0027 (19)0.006 (2)0.019 (2)
C100.035 (2)0.059 (3)0.062 (4)0.012 (2)0.008 (2)0.018 (3)
C110.020 (2)0.067 (3)0.045 (3)0.000 (2)0.009 (2)0.015 (3)
C120.033 (2)0.044 (3)0.058 (3)0.009 (2)0.006 (2)0.012 (2)
C130.029 (2)0.033 (2)0.047 (3)0.0071 (18)0.001 (2)0.000 (2)
Br10.0269 (2)0.1078 (5)0.0743 (4)0.0028 (3)0.0111 (3)0.0396 (4)
O20.0328 (16)0.0275 (14)0.0410 (19)0.0115 (12)0.0019 (13)0.0060 (13)
F40.054 (2)0.075 (2)0.105 (3)0.0289 (17)0.040 (2)0.035 (2)
F50.0513 (18)0.0253 (13)0.097 (3)0.0075 (12)0.0090 (18)0.0024 (16)
F60.0541 (19)0.0514 (17)0.084 (3)0.0087 (15)0.0318 (19)0.0024 (19)
N60.0182 (16)0.0241 (16)0.039 (2)0.0027 (12)0.0038 (14)0.0013 (15)
N70.0238 (16)0.0228 (15)0.0317 (19)0.0017 (12)0.0012 (14)0.0055 (15)
N80.0236 (16)0.0170 (14)0.0306 (19)0.0037 (13)0.0000 (13)0.0022 (13)
N90.0234 (16)0.0271 (16)0.036 (2)0.0004 (13)0.0010 (15)0.0021 (16)
N100.0282 (18)0.0223 (17)0.045 (2)0.0005 (13)0.0071 (16)0.0066 (16)
C200.036 (2)0.024 (2)0.053 (3)0.0041 (17)0.004 (2)0.006 (2)
C140.0235 (19)0.0188 (18)0.035 (2)0.0034 (14)0.0021 (16)0.0006 (16)
C150.0263 (19)0.0203 (17)0.0227 (19)0.0001 (14)0.0019 (16)0.0032 (16)
C160.0223 (18)0.0272 (19)0.024 (2)0.0066 (15)0.0011 (16)0.0003 (16)
C170.033 (2)0.0238 (18)0.0199 (19)0.0006 (16)0.0032 (16)0.0034 (16)
C180.032 (2)0.0179 (17)0.036 (2)0.0016 (16)0.0008 (18)0.0034 (17)
C190.031 (2)0.028 (2)0.028 (2)0.0018 (16)0.0023 (18)0.0035 (18)
Br20.1629 (13)0.0842 (6)0.0300 (3)0.0488 (7)0.0104 (5)0.0130 (4)
C210.044 (3)0.019 (2)0.030 (3)0.017 (2)0.012 (2)0.0023 (19)
C220.053 (4)0.051 (4)0.039 (3)0.004 (3)0.011 (3)0.008 (3)
C230.084 (5)0.051 (4)0.045 (4)0.008 (4)0.024 (4)0.012 (3)
C240.087 (5)0.043 (3)0.023 (3)0.027 (3)0.007 (3)0.000 (3)
C250.092 (6)0.063 (4)0.031 (3)0.010 (4)0.006 (3)0.011 (3)
C260.065 (4)0.046 (3)0.028 (3)0.001 (3)0.003 (3)0.004 (2)
Geometric parameters (Å, º) top
O1—C41.229 (5)N6—H6N0.902 (19)
F1—C71.331 (8)N7—C151.339 (5)
F2—C71.319 (6)N7—C161.364 (5)
F3—C71.334 (7)N8—C161.373 (5)
N1—C21.344 (6)N8—C171.396 (5)
N1—C11.446 (5)N8—C141.464 (5)
N1—H1N0.87 (2)N9—C161.317 (5)
N2—C21.334 (6)N9—C191.368 (5)
N2—C31.348 (5)N10—C151.311 (5)
N3—C31.379 (5)N10—H10A0.89 (2)
N3—C41.403 (5)N10—H10B0.90 (2)
N3—C11.465 (5)C20—C191.516 (6)
N4—C31.318 (6)C14—C211.509 (5)
N4—C61.351 (6)C14—C21A1.591 (9)
N5—C21.331 (5)C14—H140.9900
N5—H5A0.895 (14)C17—C181.433 (6)
N5—H5B0.892 (14)C18—C191.343 (6)
C1—C81.519 (6)C18—H180.9400
C1—H1A0.9900Br2—C241.875 (3)
C4—C51.423 (7)C21—C221.3900
C5—C61.347 (8)C21—C261.3900
C5—H50.9400C22—C231.3900
C6—C71.517 (7)C22—H220.9400
C8—C91.377 (6)C23—C241.3900
C8—C131.381 (6)C23—H230.9400
C9—C101.387 (7)C24—C251.3900
C9—H90.9400C25—C261.3900
C10—C111.371 (8)C25—H250.9400
C10—H100.9400C26—H260.9400
C11—C121.361 (8)Br3—C24A1.921 (7)
C11—Br11.893 (4)C21A—C22A1.3900
C12—C131.383 (7)C21A—C26A1.3900
C12—H120.9400C22A—C23A1.3900
C13—H130.9400C22A—H22A0.9400
O2—C171.219 (5)C23A—C24A1.3900
F4—C201.316 (6)C23A—H23A0.9400
F5—C201.298 (5)C24A—C25A1.3900
F6—C201.341 (7)C25A—C26A1.3900
N6—C151.352 (5)C25A—H25A0.9400
N6—C141.439 (5)C26A—H26A0.9400
C2—N1—C1115.8 (4)F5—C20—F4108.7 (4)
C2—N1—H1N119 (3)F5—C20—F6107.1 (4)
C1—N1—H1N123 (3)F4—C20—F6105.4 (4)
C2—N2—C3117.5 (3)F5—C20—C19113.0 (4)
C3—N3—C4123.9 (4)F4—C20—C19111.7 (4)
C3—N3—C1116.3 (3)F6—C20—C19110.5 (4)
C4—N3—C1119.7 (3)N6—C14—N8107.3 (3)
C3—N4—C6116.3 (4)N6—C14—C21112.5 (4)
C2—N5—H5A113 (3)N8—C14—C21112.0 (4)
C2—N5—H5B126 (4)N6—C14—C21A112 (3)
H5A—N5—H5B121 (5)N8—C14—C21A106 (2)
N1—C1—N3106.2 (3)C21—C14—C21A7 (2)
N1—C1—C8112.7 (3)N6—C14—H14108.3
N3—C1—C8109.8 (3)N8—C14—H14108.3
N1—C1—H1A109.3C21—C14—H14108.3
N3—C1—H1A109.3C21A—C14—H14114.4
C8—C1—H1A109.3N10—C15—N7120.2 (3)
N5—C2—N2119.8 (4)N10—C15—N6118.1 (3)
N5—C2—N1118.1 (4)N7—C15—N6121.6 (3)
N2—C2—N1122.0 (4)N9—C16—N7117.7 (3)
N4—C3—N2119.2 (4)N9—C16—N8121.7 (3)
N4—C3—N3120.7 (3)N7—C16—N8120.6 (3)
N2—C3—N3120.0 (4)O2—C17—N8120.0 (4)
O1—C4—N3119.7 (4)O2—C17—C18126.8 (4)
O1—C4—C5127.3 (4)N8—C17—C18113.1 (3)
N3—C4—C5113.0 (4)C19—C18—C17118.9 (4)
C6—C5—C4119.0 (4)C19—C18—H18120.6
C6—C5—H5120.5C17—C18—H18120.6
C4—C5—H5120.5C18—C19—N9126.3 (4)
C5—C6—N4126.3 (4)C18—C19—C20120.6 (4)
C5—C6—C7120.9 (4)N9—C19—C20113.1 (4)
N4—C6—C7112.8 (4)C22—C21—C26120.0
F2—C7—F1107.1 (5)C22—C21—C14117.5 (3)
F2—C7—F3107.7 (5)C26—C21—C14122.5 (3)
F1—C7—F3106.2 (5)C21—C22—C23120.0
F2—C7—C6112.7 (5)C21—C22—H22120.0
F1—C7—C6112.1 (4)C23—C22—H22120.0
F3—C7—C6110.8 (5)C24—C23—C22120.0
C9—C8—C13118.0 (4)C24—C23—H23120.0
C9—C8—C1121.2 (4)C22—C23—H23120.0
C13—C8—C1120.9 (4)C23—C24—C25120.0
C8—C9—C10121.5 (4)C23—C24—Br2120.2 (2)
C8—C9—H9119.2C25—C24—Br2119.7 (2)
C10—C9—H9119.2C24—C25—C26120.0
C11—C10—C9118.7 (5)C24—C25—H25120.0
C11—C10—H10120.7C26—C25—H25120.0
C9—C10—H10120.7C25—C26—C21120.0
C12—C11—C10121.3 (4)C25—C26—H26120.0
C12—C11—Br1118.9 (4)C21—C26—H26120.0
C10—C11—Br1119.7 (4)C22A—C21A—C26A120.0
C11—C12—C13119.3 (5)C22A—C21A—C14123 (3)
C11—C12—H12120.4C26A—C21A—C14117 (3)
C13—C12—H12120.4C21A—C22A—C23A120.0
C8—C13—C12121.2 (5)C21A—C22A—H22A120.0
C8—C13—H13119.4C23A—C22A—H22A120.0
C12—C13—H13119.4C24A—C23A—C22A120.0
C15—N6—C14117.9 (3)C24A—C23A—H23A120.0
C15—N6—H6N112 (3)C22A—C23A—H23A120.0
C14—N6—H6N128 (3)C23A—C24A—C25A120.0
C15—N7—C16117.8 (3)C23A—C24A—Br3119.9 (4)
C16—N8—C17124.2 (3)C25A—C24A—Br3120.0 (4)
C16—N8—C14117.9 (3)C26A—C25A—C24A120.0
C17—N8—C14117.0 (3)C26A—C25A—H25A120.0
C16—N9—C19115.7 (3)C24A—C25A—H25A120.0
C15—N10—H10A118 (3)C25A—C26A—C21A120.0
C15—N10—H10B122 (3)C25A—C26A—H26A120.0
H10A—N10—H10B119 (5)C21A—C26A—H26A120.0
C2—N1—C1—N349.4 (5)C14—N6—C15—N10160.7 (4)
C2—N1—C1—C870.9 (5)C14—N6—C15—N722.5 (6)
C3—N3—C1—N145.3 (4)C19—N9—C16—N7178.7 (4)
C4—N3—C1—N1136.7 (4)C19—N9—C16—N80.3 (6)
C3—N3—C1—C876.9 (4)C15—N7—C16—N9166.1 (4)
C4—N3—C1—C8101.0 (4)C15—N7—C16—N812.9 (6)
C3—N2—C2—N5163.1 (4)C17—N8—C16—N91.2 (6)
C3—N2—C2—N113.9 (6)C14—N8—C16—N9167.5 (4)
C1—N1—C2—N5160.7 (4)C17—N8—C16—N7177.8 (4)
C1—N1—C2—N222.3 (6)C14—N8—C16—N713.5 (6)
C6—N4—C3—N2170.1 (4)C16—N8—C17—O2177.5 (4)
C6—N4—C3—N38.0 (6)C14—N8—C17—O28.7 (6)
C2—N2—C3—N4160.4 (4)C16—N8—C17—C180.2 (6)
C2—N2—C3—N317.8 (5)C14—N8—C17—C18168.6 (4)
C4—N3—C3—N49.9 (6)O2—C17—C18—C19175.5 (4)
C1—N3—C3—N4167.9 (4)N8—C17—C18—C191.6 (6)
C4—N3—C3—N2168.2 (3)C17—C18—C19—N92.6 (7)
C1—N3—C3—N213.9 (5)C17—C18—C19—C20178.1 (4)
C3—N3—C4—O1178.5 (4)C16—N9—C19—C181.6 (7)
C1—N3—C4—O13.8 (6)C16—N9—C19—C20179.1 (4)
C3—N3—C4—C53.8 (5)F5—C20—C19—C184.4 (7)
C1—N3—C4—C5174.0 (4)F4—C20—C19—C18118.5 (5)
O1—C4—C5—C6174.3 (4)F6—C20—C19—C18124.5 (5)
N3—C4—C5—C63.2 (6)F5—C20—C19—N9175.0 (4)
C4—C5—C6—N45.0 (8)F4—C20—C19—N962.1 (6)
C4—C5—C6—C7177.2 (5)F6—C20—C19—N954.9 (5)
C3—N4—C6—C50.8 (7)N6—C14—C21—C2256.3 (4)
C3—N4—C6—C7177.1 (4)N8—C14—C21—C22177.3 (3)
C5—C6—C7—F24.5 (8)C21A—C14—C21—C22147 (25)
N4—C6—C7—F2177.4 (5)N6—C14—C21—C26123.7 (4)
C5—C6—C7—F1125.4 (5)N8—C14—C21—C262.6 (5)
N4—C6—C7—F156.6 (6)C21A—C14—C21—C2633 (24)
C5—C6—C7—F3116.3 (6)C26—C21—C22—C230.0
N4—C6—C7—F361.8 (6)C14—C21—C22—C23180.0 (5)
N1—C1—C8—C9160.8 (5)C21—C22—C23—C240.0
N3—C1—C8—C942.5 (6)C22—C23—C24—C250.0
N1—C1—C8—C1319.2 (6)C22—C23—C24—Br2178.6 (3)
N3—C1—C8—C13137.5 (4)C23—C24—C25—C260.0
C13—C8—C9—C101.3 (8)Br2—C24—C25—C26178.6 (3)
C1—C8—C9—C10178.7 (5)C24—C25—C26—C210.0
C8—C9—C10—C110.1 (9)C22—C21—C26—C250.0
C9—C10—C11—C121.5 (9)C14—C21—C26—C25180.0 (5)
C9—C10—C11—Br1177.8 (5)N6—C14—C21A—C22A66 (4)
C10—C11—C12—C131.4 (9)N8—C14—C21A—C22A177 (3)
Br1—C11—C12—C13177.9 (4)C21—C14—C21A—C22A26 (22)
C9—C8—C13—C121.4 (8)N6—C14—C21A—C26A114 (3)
C1—C8—C13—C12178.6 (5)N8—C14—C21A—C26A3 (4)
C11—C12—C13—C80.1 (8)C21—C14—C21A—C26A154 (27)
C15—N6—C14—N844.6 (5)C26A—C21A—C22A—C23A0.0
C15—N6—C14—C2179.0 (5)C14—C21A—C22A—C23A180 (6)
C15—N6—C14—C21A71 (2)C21A—C22A—C23A—C24A0.0
C16—N8—C14—N640.1 (5)C22A—C23A—C24A—C25A0.0
C17—N8—C14—N6150.4 (3)C22A—C23A—C24A—Br3179 (4)
C16—N8—C14—C2183.9 (5)C23A—C24A—C25A—C26A0.0
C17—N8—C14—C2185.6 (5)Br3—C24A—C25A—C26A179 (4)
C16—N8—C14—C21A80 (3)C24A—C25A—C26A—C21A0.0
C17—N8—C14—C21A89 (3)C22A—C21A—C26A—C25A0.0
C16—N7—C15—N10168.1 (4)C14—C21A—C26A—C25A180 (6)
C16—N7—C15—N68.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.87 (2)2.15 (2)3.005 (5)171 (5)
N5—H5A···O2ii0.90 (1)2.09 (3)2.905 (5)152 (5)
N5—H5B···N4i0.89 (1)2.25 (2)3.095 (6)159 (5)
N5—H5B···F1i0.89 (1)2.46 (4)3.054 (5)124 (4)
N6—H6N···N7iii0.90 (2)2.10 (3)2.967 (5)160 (5)
N10—H10A···O10.89 (2)2.03 (3)2.885 (5)162 (5)
N10—H10B···N9iii0.90 (2)2.15 (2)3.041 (5)171 (5)
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H9BrF3N5O
Mr388.16
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)223
a, b, c (Å)10.0531 (4), 29.9108 (13), 10.1945 (4)
V3)3065.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.46 × 0.34 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.367, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
20728, 6287, 4979
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.138, 1.04
No. of reflections6287
No. of parameters432
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.50, 0.74
Absolute structureFlack (1983), 2044 Friedel pairs
Absolute structure parameter0.011 (10)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.87 (2)2.15 (2)3.005 (5)171 (5)
N5—H5A···O2ii0.895 (14)2.09 (3)2.905 (5)152 (5)
N5—H5B···N4i0.892 (14)2.25 (2)3.095 (6)159 (5)
N5—H5B···F1i0.892 (14)2.46 (4)3.054 (5)124 (4)
N6—H6N···N7iii0.902 (19)2.10 (3)2.967 (5)160 (5)
N10—H10A···O10.89 (2)2.03 (3)2.885 (5)162 (5)
N10—H10B···N9iii0.90 (2)2.15 (2)3.041 (5)171 (5)
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z.
 

Footnotes

Part 13 in the series `Fused heterocyclic systems with an s-triazine ring'. For Part 12, see Dolzhenko et al. (2008b).

Acknowledgements

This work was supported by the National Medical Research Council, Singapore (grant Nos. NMRC/NIG/0019/2008 and NMRC/NIG/0020/2008).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008a). J. Heterocycl. Chem. 45, 173-176.  CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008b). Tetrahedron Lett. 49, 7180-7183.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007). Acta Cryst. E63, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds