metal-organic compounds
Poly[[[diaquacobalt(II)]-bis[μ2-1,1′-(butane-1,4-diyl)diimidazole-κ2N3:N3′]] dichloride tetrahydrate]
aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com
In the title compound, {[Co(C10H14N4)2(H2O)2]Cl2·4H2O}n, the CoII atom and the mid-point of the 1,1′-butane-1,4-diyldiimidazole ligands lie on inversion centers. The CoII atom is six-coordinated in a slightly distorted octahedral environment by four N atoms from four different ligands and by two O atoms from the water molecules. The CoII atoms are bridged by the ligands into a (4,4) net. Adjacent nets are linked to the chloride anions and uncoordinated water molecules via O—H⋯Cl and O—H⋯O hydrogen bonds, generating a three-dimensional supramolecular structure.
Related literature
For the synthesis of 1,1′-butane-1,4-diyldiimidazole, see: Ma et al.(2003); Yu et al. (2008). For a related Co complex, see: Dong & Zhang (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809007478/ng2551sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007478/ng2551Isup2.hkl
L was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma et al., 2003). L (0.76 g, 4 mmol) and cobalt dichloride (0.51 g, 4 mmol) were dissolved in hot aqua solution (10 ml) to give a clear solution. The resulting solution was allowed to stand in a desiccator at room temperature for a week, red crystals of (I) were obtained.
H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with with Uiso(H) = 1.5Ueq(O).
Data collection: RAPID-AUTO (Rigaku 1998); cell
RAPID-AUTO (Rigaku 1998); data reduction: CrystalStructure (Rigaku/MSC 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Co(C10H14N4)2(H2O)2]Cl2·4H2O | Z = 1 |
Mr = 618.43 | F(000) = 325 |
Triclinic, P1 | Dx = 1.393 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.969 (6) Å | Cell parameters from 6505 reflections |
b = 9.979 (6) Å | θ = 3.3–27.5° |
c = 10.259 (7) Å | µ = 0.81 mm−1 |
α = 114.97 (2)° | T = 291 K |
β = 90.83 (3)° | Block, red |
γ = 93.70 (3)° | 0.44 × 0.37 × 0.22 mm |
V = 737.3 (8) Å3 |
Rigaku R-AXIS RAPID diffractometer | 3348 independent reflections |
Radiation source: fine-focus sealed tube | 3018 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scan | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→10 |
Tmin = 0.718, Tmax = 0.842 | k = −12→12 |
7288 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.1566P] where P = (Fo2 + 2Fc2)/3 |
3348 reflections | (Δ/σ)max < 0.001 |
169 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
[Co(C10H14N4)2(H2O)2]Cl2·4H2O | γ = 93.70 (3)° |
Mr = 618.43 | V = 737.3 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.969 (6) Å | Mo Kα radiation |
b = 9.979 (6) Å | µ = 0.81 mm−1 |
c = 10.259 (7) Å | T = 291 K |
α = 114.97 (2)° | 0.44 × 0.37 × 0.22 mm |
β = 90.83 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3348 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3018 reflections with I > 2σ(I) |
Tmin = 0.718, Tmax = 0.842 | Rint = 0.017 |
7288 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.33 e Å−3 |
3348 reflections | Δρmin = −0.23 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6521 (2) | 0.1455 (2) | 0.94674 (17) | 0.0354 (4) | |
H1 | 0.6695 | 0.2157 | 1.0416 | 0.043* | |
C2 | 0.5873 (2) | 0.16729 (19) | 0.83506 (17) | 0.0330 (3) | |
H2 | 0.5516 | 0.2565 | 0.8409 | 0.040* | |
C3 | 0.64306 (19) | −0.06103 (17) | 0.75067 (16) | 0.0283 (3) | |
H3 | 0.6543 | −0.1596 | 0.6885 | 0.034* | |
C4 | 0.7646 (2) | −0.0765 (2) | 0.9698 (2) | 0.0382 (4) | |
H4 | 0.7167 | −0.1783 | 0.9312 | 0.046* | |
H5 | 0.7386 | −0.0288 | 1.0705 | 0.046* | |
C5 | 0.9543 (2) | −0.07561 (17) | 0.95821 (18) | 0.0335 (3) | |
H6 | 0.9958 | −0.1443 | 0.9931 | 0.040* | |
H7 | 0.9803 | −0.1107 | 0.8576 | 0.040* | |
C6 | 0.2259 (2) | 0.22255 (18) | 0.64249 (18) | 0.0331 (3) | |
H8 | 0.2873 | 0.2993 | 0.6314 | 0.040* | |
C7 | 0.1451 (2) | 0.00888 (18) | 0.63070 (18) | 0.0325 (3) | |
H9 | 0.1409 | −0.0916 | 0.6093 | 0.039* | |
C8 | 0.0303 (2) | 0.10224 (18) | 0.70471 (18) | 0.0344 (4) | |
H10 | −0.0658 | 0.0784 | 0.7432 | 0.041* | |
C9 | 0.0058 (2) | 0.3775 (2) | 0.7958 (2) | 0.0406 (4) | |
H11 | −0.1151 | 0.3629 | 0.7760 | 0.049* | |
H12 | 0.0495 | 0.4529 | 0.7663 | 0.049* | |
C10 | 0.0423 (3) | 0.43001 (19) | 0.9552 (2) | 0.0438 (4) | |
H13 | 0.1630 | 0.4487 | 0.9751 | 0.053* | |
H14 | 0.0038 | 0.3522 | 0.9832 | 0.053* | |
Cl1 | 0.74821 (7) | 0.35621 (5) | 0.32791 (5) | 0.04818 (14) | |
Co1 | 0.5000 | 0.0000 | 0.5000 | 0.02144 (9) | |
N1 | 0.58238 (16) | 0.03688 (14) | 0.71136 (13) | 0.0274 (3) | |
N2 | 0.68668 (16) | −0.00004 (15) | 0.89242 (14) | 0.0299 (3) | |
N3 | 0.26947 (15) | 0.08534 (14) | 0.59164 (13) | 0.0265 (3) | |
N4 | 0.08195 (17) | 0.23842 (15) | 0.71246 (15) | 0.0312 (3) | |
O1 | 0.59361 (16) | 0.22377 (12) | 0.53595 (13) | 0.0381 (3) | |
H15 | 0.5827 | 0.3049 | 0.6089 | 0.057* | |
H16 | 0.6273 | 0.2429 | 0.4670 | 0.057* | |
O2 | 0.1615 (2) | 0.38041 (17) | 0.36469 (18) | 0.0668 (5) | |
H17 | 0.1812 | 0.4490 | 0.4489 | 0.100* | |
H18 | 0.0554 | 0.3700 | 0.3490 | 0.100* | |
O3 | 0.4231 (2) | 0.49280 (17) | 0.24618 (19) | 0.0670 (5) | |
H19 | 0.3378 | 0.4575 | 0.2734 | 0.100* | |
H20 | 0.5121 | 0.4639 | 0.2693 | 0.100* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0329 (8) | 0.0426 (9) | 0.0241 (7) | 0.0052 (7) | 0.0005 (6) | 0.0074 (7) |
C2 | 0.0328 (8) | 0.0345 (8) | 0.0280 (7) | 0.0091 (6) | 0.0016 (6) | 0.0086 (7) |
C3 | 0.0268 (7) | 0.0319 (8) | 0.0256 (7) | 0.0010 (6) | −0.0018 (6) | 0.0120 (6) |
C4 | 0.0357 (9) | 0.0503 (10) | 0.0395 (9) | −0.0060 (7) | −0.0089 (7) | 0.0314 (8) |
C5 | 0.0354 (9) | 0.0321 (8) | 0.0369 (8) | 0.0016 (6) | −0.0083 (7) | 0.0188 (7) |
C6 | 0.0291 (8) | 0.0340 (8) | 0.0418 (9) | 0.0078 (6) | 0.0106 (7) | 0.0205 (7) |
C7 | 0.0335 (8) | 0.0283 (8) | 0.0337 (8) | 0.0033 (6) | 0.0067 (6) | 0.0110 (7) |
C8 | 0.0306 (8) | 0.0358 (8) | 0.0378 (8) | 0.0041 (6) | 0.0110 (7) | 0.0161 (7) |
C9 | 0.0412 (10) | 0.0369 (9) | 0.0508 (10) | 0.0190 (7) | 0.0179 (8) | 0.0228 (8) |
C10 | 0.0513 (11) | 0.0324 (9) | 0.0497 (11) | 0.0197 (8) | 0.0149 (9) | 0.0166 (8) |
Cl1 | 0.0565 (3) | 0.0506 (3) | 0.0353 (2) | −0.0058 (2) | 0.0008 (2) | 0.0175 (2) |
Co1 | 0.02117 (15) | 0.02402 (15) | 0.01902 (14) | 0.00459 (10) | 0.00162 (10) | 0.00862 (11) |
N1 | 0.0255 (6) | 0.0329 (7) | 0.0226 (6) | 0.0051 (5) | 0.0004 (5) | 0.0104 (5) |
N2 | 0.0247 (6) | 0.0420 (7) | 0.0260 (6) | 0.0001 (5) | −0.0020 (5) | 0.0179 (6) |
N3 | 0.0235 (6) | 0.0316 (6) | 0.0256 (6) | 0.0061 (5) | 0.0038 (5) | 0.0127 (5) |
N4 | 0.0290 (7) | 0.0328 (7) | 0.0353 (7) | 0.0105 (5) | 0.0103 (5) | 0.0166 (6) |
O1 | 0.0505 (8) | 0.0261 (6) | 0.0355 (6) | 0.0007 (5) | 0.0115 (5) | 0.0110 (5) |
O2 | 0.0597 (10) | 0.0521 (9) | 0.0657 (10) | 0.0088 (7) | −0.0033 (8) | 0.0025 (8) |
O3 | 0.0763 (12) | 0.0472 (9) | 0.0683 (10) | 0.0111 (8) | 0.0051 (9) | 0.0147 (8) |
C1—C2 | 1.354 (3) | C8—N4 | 1.363 (2) |
C1—N2 | 1.367 (2) | C8—H10 | 0.9300 |
C1—H1 | 0.9300 | C9—N4 | 1.466 (2) |
C2—N1 | 1.380 (2) | C9—C10 | 1.508 (3) |
C2—H2 | 0.9300 | C9—H11 | 0.9700 |
C3—N1 | 1.319 (2) | C9—H12 | 0.9700 |
C3—N2 | 1.348 (2) | C10—C10ii | 1.518 (3) |
C3—H3 | 0.9300 | C10—H13 | 0.9700 |
C4—N2 | 1.468 (2) | C10—H14 | 0.9700 |
C4—C5 | 1.518 (3) | Co1—N1iii | 2.1265 (18) |
C4—H4 | 0.9700 | Co1—N1 | 2.1265 (18) |
C4—H5 | 0.9700 | Co1—N3 | 2.1355 (18) |
C5—C5i | 1.513 (3) | Co1—N3iii | 2.1355 (18) |
C5—H6 | 0.9700 | Co1—O1 | 2.1819 (17) |
C5—H7 | 0.9700 | Co1—O1iii | 2.1819 (17) |
C6—N3 | 1.316 (2) | O1—H15 | 0.8500 |
C6—N4 | 1.345 (2) | O1—H16 | 0.8501 |
C6—H8 | 0.9300 | O2—H17 | 0.8501 |
C7—C8 | 1.347 (2) | O2—H18 | 0.8499 |
C7—N3 | 1.378 (2) | O3—H19 | 0.8500 |
C7—H9 | 0.9300 | O3—H20 | 0.8501 |
C2—C1—N2 | 106.40 (14) | C9—C10—H13 | 109.1 |
C2—C1—H1 | 126.8 | C10ii—C10—H13 | 109.1 |
N2—C1—H1 | 126.8 | C9—C10—H14 | 109.1 |
C1—C2—N1 | 109.55 (16) | C10ii—C10—H14 | 109.1 |
C1—C2—H2 | 125.2 | H13—C10—H14 | 107.8 |
N1—C2—H2 | 125.2 | N1iii—Co1—N1 | 180.0 |
N1—C3—N2 | 111.34 (14) | N1iii—Co1—N3 | 93.49 (6) |
N1—C3—H3 | 124.3 | N1—Co1—N3 | 86.51 (6) |
N2—C3—H3 | 124.3 | N1iii—Co1—N3iii | 86.51 (6) |
N2—C4—C5 | 112.55 (14) | N1—Co1—N3iii | 93.49 (6) |
N2—C4—H4 | 109.1 | N3—Co1—N3iii | 180.0 |
C5—C4—H4 | 109.1 | N1iii—Co1—O1 | 88.40 (6) |
N2—C4—H5 | 109.1 | N1—Co1—O1 | 91.60 (6) |
C5—C4—H5 | 109.1 | N3—Co1—O1 | 88.99 (6) |
H4—C4—H5 | 107.8 | N3iii—Co1—O1 | 91.01 (6) |
C5i—C5—C4 | 113.60 (19) | N1iii—Co1—O1iii | 91.60 (6) |
C5i—C5—H6 | 108.8 | N1—Co1—O1iii | 88.40 (6) |
C4—C5—H6 | 108.8 | N3—Co1—O1iii | 91.01 (6) |
C5i—C5—H7 | 108.8 | N3iii—Co1—O1iii | 88.99 (6) |
C4—C5—H7 | 108.8 | O1—Co1—O1iii | 180.0 |
H6—C5—H7 | 107.7 | C3—N1—C2 | 105.50 (14) |
N3—C6—N4 | 111.80 (15) | C3—N1—Co1 | 126.67 (11) |
N3—C6—H8 | 124.1 | C2—N1—Co1 | 127.81 (12) |
N4—C6—H8 | 124.1 | C3—N2—C1 | 107.20 (14) |
C8—C7—N3 | 109.45 (15) | C3—N2—C4 | 125.39 (15) |
C8—C7—H9 | 125.3 | C1—N2—C4 | 127.34 (14) |
N3—C7—H9 | 125.3 | C6—N3—C7 | 105.19 (14) |
C7—C8—N4 | 106.96 (15) | C6—N3—Co1 | 128.87 (11) |
C7—C8—H10 | 126.5 | C7—N3—Co1 | 125.19 (11) |
N4—C8—H10 | 126.5 | C6—N4—C8 | 106.59 (14) |
N4—C9—C10 | 111.41 (14) | C6—N4—C9 | 126.86 (15) |
N4—C9—H11 | 109.3 | C8—N4—C9 | 126.17 (14) |
C10—C9—H11 | 109.3 | Co1—O1—H15 | 128.5 |
N4—C9—H12 | 109.3 | Co1—O1—H16 | 121.2 |
C10—C9—H12 | 109.3 | H15—O1—H16 | 108.9 |
H11—C9—H12 | 108.0 | H17—O2—H18 | 106.8 |
C9—C10—C10ii | 112.6 (2) | H19—O3—H20 | 109.6 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x, −y+1, −z+2; (iii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H15···O3iv | 0.85 | 1.94 | 2.781 (2) | 169 |
O1—H16···Cl1 | 0.85 | 2.35 | 3.1728 (19) | 165 |
O2—H17···Cl1iv | 0.85 | 2.32 | 3.172 (2) | 176 |
O2—H18···Cl1v | 0.85 | 2.44 | 3.292 (3) | 175 |
O3—H19···O2 | 0.85 | 1.99 | 2.829 (3) | 171 |
O3—H20···Cl1 | 0.85 | 2.41 | 3.261 (3) | 174 |
Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C10H14N4)2(H2O)2]Cl2·4H2O |
Mr | 618.43 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 291 |
a, b, c (Å) | 7.969 (6), 9.979 (6), 10.259 (7) |
α, β, γ (°) | 114.97 (2), 90.83 (3), 93.70 (3) |
V (Å3) | 737.3 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.44 × 0.37 × 0.22 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.718, 0.842 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7288, 3348, 3018 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.084, 1.14 |
No. of reflections | 3348 |
No. of parameters | 169 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.23 |
Computer programs: RAPID-AUTO (Rigaku 1998), CrystalStructure (Rigaku/MSC 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Co1—N1 | 2.1265 (18) | Co1—O1 | 2.1819 (17) |
Co1—N3 | 2.1355 (18) | ||
N1i—Co1—N1 | 180.0 | N1—Co1—O1 | 91.60 (6) |
N1—Co1—N3 | 86.51 (6) | N3—Co1—O1 | 88.99 (6) |
N3—Co1—N3i | 180.0 | N1—Co1—O1i | 88.40 (6) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H15···O3ii | 0.85 | 1.94 | 2.781 (2) | 169.3 |
O1—H16···Cl1 | 0.85 | 2.35 | 3.1728 (19) | 164.5 |
O2—H17···Cl1ii | 0.85 | 2.32 | 3.172 (2) | 175.6 |
O2—H18···Cl1iii | 0.85 | 2.44 | 3.292 (3) | 174.6 |
O3—H19···O2 | 0.85 | 1.99 | 2.829 (3) | 170.8 |
O3—H20···Cl1 | 0.85 | 2.41 | 3.261 (3) | 173.8 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z. |
Acknowledgements
The authors acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20872030), the Research Foundation of Heilongjiang Provincial Education Department (grant Nos. 11513073), the Project of the Special Fund of the Science and Technology Innovation People of Harbin (grant Nos. RC2006QN018001) and Heilongjiang University.
References
Dong, G.-C. & Zhang, R.-C. (2006). Acta Cryst. E62, m1847–m1849. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The L molecules as a flexible ligand exhibit a variety of supramolecular aggregation patterns (Ma et al., 2003; Dong et al., 2006; Yu et al., 2008). In this paper, we report the new title compound, (I), synthssized by the reaction of L molecules and cobalt dichloride in aqua solution.
In (I), each CoII atom is located on a inversion centre and is six-coordinated in an octahedral environment by four N atoms from four different L molecules and two O atoms form the two water molecules (Fig. 1). The Co—N and Co—O distances are normal (Table 1). The CoII atoms are bridged by ligands, generating a two-dimensional (4,4)-network (Fig. 2).
The hydrogen bonding cluster, containing the O—H···Cl and O—H···O hydrogen bonding interaction between the chloride anions, uncoordinated water molecules and the coordinated water molecules (Fig. 3), which linke the adjacent fishnet planes to a three-dimensional supramolecular structure (Fig. 4, Table 2).