metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m370-m371

Poly[[[di­aqua­cobalt(II)]-bis­­[μ2-1,1′-(butane-1,4-di­yl)di­imidazole-κ2N3:N3′]] dichloride tetra­hydrate]

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 26 February 2009; accepted 1 March 2009; online 6 March 2009)

In the title compound, {[Co(C10H14N4)2(H2O)2]Cl2·4H2O}n, the CoII atom and the mid-point of the 1,1′-butane-1,4-diyl­diimidazole ligands lie on inversion centers. The CoII atom is six-coordinated in a slightly distorted octa­hedral environment by four N atoms from four different ligands and by two O atoms from the water mol­ecules. The CoII atoms are bridged by the ligands into a (4,4) net. Adjacent nets are linked to the chloride anions and uncoordinated water mol­ecules via O—H⋯Cl and O—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular structure.

Related literature

For the synthesis of 1,1′-butane-1,4-diyldiimidazole, see: Ma et al.(2003[Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]); Yu et al. (2008[Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.]). For a related Co complex, see: Dong & Zhang (2006[Dong, G.-C. & Zhang, R.-C. (2006). Acta Cryst. E62, m1847-m1849.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H14N4)2(H2O)2]Cl2·4H2O

  • Mr = 618.43

  • Triclinic, [P \overline 1]

  • a = 7.969 (6) Å

  • b = 9.979 (6) Å

  • c = 10.259 (7) Å

  • α = 114.97 (2)°

  • β = 90.83 (3)°

  • γ = 93.70 (3)°

  • V = 737.3 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 291 K

  • 0.44 × 0.37 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.718, Tmax = 0.842

  • 7288 measured reflections

  • 3348 independent reflections

  • 3018 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.084

  • S = 1.14

  • 3348 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.1265 (18)
Co1—N3 2.1355 (18)
Co1—O1 2.1819 (17)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H15⋯O3ii 0.85 1.94 2.781 (2) 169
O1—H16⋯Cl1 0.85 2.35 3.1728 (19) 165
O2—H17⋯Cl1ii 0.85 2.32 3.172 (2) 176
O2—H18⋯Cl1iii 0.85 2.44 3.292 (3) 175
O3—H19⋯O2 0.85 1.99 2.829 (3) 171
O3—H20⋯Cl1 0.85 2.41 3.261 (3) 174
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The L molecules as a flexible ligand exhibit a variety of supramolecular aggregation patterns (Ma et al., 2003; Dong et al., 2006; Yu et al., 2008). In this paper, we report the new title compound, (I), synthssized by the reaction of L molecules and cobalt dichloride in aqua solution.

In (I), each CoII atom is located on a inversion centre and is six-coordinated in an octahedral environment by four N atoms from four different L molecules and two O atoms form the two water molecules (Fig. 1). The Co—N and Co—O distances are normal (Table 1). The CoII atoms are bridged by ligands, generating a two-dimensional (4,4)-network (Fig. 2).

The hydrogen bonding cluster, containing the O—H···Cl and O—H···O hydrogen bonding interaction between the chloride anions, uncoordinated water molecules and the coordinated water molecules (Fig. 3), which linke the adjacent fishnet planes to a three-dimensional supramolecular structure (Fig. 4, Table 2).

Related literature top

For the synthesis of 1,1'-butane-1,4-diyldiimidazole, see: Ma et al.(2003); Yu et al. (2008). For a related Co complex, see: Dong & Zhang (2006).

Experimental top

L was prepared from imidazole and 1,4-dibromobutane in DMSO (Ma et al., 2003). L (0.76 g, 4 mmol) and cobalt dichloride (0.51 g, 4 mmol) were dissolved in hot aqua solution (10 ml) to give a clear solution. The resulting solution was allowed to stand in a desiccator at room temperature for a week, red crystals of (I) were obtained.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku 1998); cell refinement: RAPID-AUTO (Rigaku 1998); data reduction: CrystalStructure (Rigaku/MSC 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen-bonding interactions [Symmetry code; (I) -x + 1, -y + 1, -z + 1; (II) -x + 2, -y, -z + 2: (III) -x, -y + 1, -z + 2]
[Figure 2] Fig. 2. A partial packing view, showing the two-dimensional (4,4)-network. C-bond H atoms have beeb omitted.
[Figure 3] Fig. 3. A showing of the hydrogen bonding cluster in I.
[Figure 4] Fig. 4. A Partial packing view, shoving the three-dimensional supramolecular structure. Dashed lines indicate the hydrogen-bonding interactions and no involving H atoms have beeb omitted.
Poly[[[diaquacobalt(II)]-bis[µ2-1,1'-(butane-1,4-diyl)diimidazole- κ2N3:N3']] dichloride tetrahydrate] top
Crystal data top
[Co(C10H14N4)2(H2O)2]Cl2·4H2OZ = 1
Mr = 618.43F(000) = 325
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.969 (6) ÅCell parameters from 6505 reflections
b = 9.979 (6) Åθ = 3.3–27.5°
c = 10.259 (7) ŵ = 0.81 mm1
α = 114.97 (2)°T = 291 K
β = 90.83 (3)°Block, red
γ = 93.70 (3)°0.44 × 0.37 × 0.22 mm
V = 737.3 (8) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3348 independent reflections
Radiation source: fine-focus sealed tube3018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scanθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.718, Tmax = 0.842k = 1212
7288 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.1566P]
where P = (Fo2 + 2Fc2)/3
3348 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Co(C10H14N4)2(H2O)2]Cl2·4H2Oγ = 93.70 (3)°
Mr = 618.43V = 737.3 (8) Å3
Triclinic, P1Z = 1
a = 7.969 (6) ÅMo Kα radiation
b = 9.979 (6) ŵ = 0.81 mm1
c = 10.259 (7) ÅT = 291 K
α = 114.97 (2)°0.44 × 0.37 × 0.22 mm
β = 90.83 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3348 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3018 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.842Rint = 0.017
7288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.14Δρmax = 0.33 e Å3
3348 reflectionsΔρmin = 0.23 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6521 (2)0.1455 (2)0.94674 (17)0.0354 (4)
H10.66950.21571.04160.043*
C20.5873 (2)0.16729 (19)0.83506 (17)0.0330 (3)
H20.55160.25650.84090.040*
C30.64306 (19)0.06103 (17)0.75067 (16)0.0283 (3)
H30.65430.15960.68850.034*
C40.7646 (2)0.0765 (2)0.9698 (2)0.0382 (4)
H40.71670.17830.93120.046*
H50.73860.02881.07050.046*
C50.9543 (2)0.07561 (17)0.95821 (18)0.0335 (3)
H60.99580.14430.99310.040*
H70.98030.11070.85760.040*
C60.2259 (2)0.22255 (18)0.64249 (18)0.0331 (3)
H80.28730.29930.63140.040*
C70.1451 (2)0.00888 (18)0.63070 (18)0.0325 (3)
H90.14090.09160.60930.039*
C80.0303 (2)0.10224 (18)0.70471 (18)0.0344 (4)
H100.06580.07840.74320.041*
C90.0058 (2)0.3775 (2)0.7958 (2)0.0406 (4)
H110.11510.36290.77600.049*
H120.04950.45290.76630.049*
C100.0423 (3)0.43001 (19)0.9552 (2)0.0438 (4)
H130.16300.44870.97510.053*
H140.00380.35220.98320.053*
Cl10.74821 (7)0.35621 (5)0.32791 (5)0.04818 (14)
Co10.50000.00000.50000.02144 (9)
N10.58238 (16)0.03688 (14)0.71136 (13)0.0274 (3)
N20.68668 (16)0.00004 (15)0.89242 (14)0.0299 (3)
N30.26947 (15)0.08534 (14)0.59164 (13)0.0265 (3)
N40.08195 (17)0.23842 (15)0.71246 (15)0.0312 (3)
O10.59361 (16)0.22377 (12)0.53595 (13)0.0381 (3)
H150.58270.30490.60890.057*
H160.62730.24290.46700.057*
O20.1615 (2)0.38041 (17)0.36469 (18)0.0668 (5)
H170.18120.44900.44890.100*
H180.05540.37000.34900.100*
O30.4231 (2)0.49280 (17)0.24618 (19)0.0670 (5)
H190.33780.45750.27340.100*
H200.51210.46390.26930.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (8)0.0426 (9)0.0241 (7)0.0052 (7)0.0005 (6)0.0074 (7)
C20.0328 (8)0.0345 (8)0.0280 (7)0.0091 (6)0.0016 (6)0.0086 (7)
C30.0268 (7)0.0319 (8)0.0256 (7)0.0010 (6)0.0018 (6)0.0120 (6)
C40.0357 (9)0.0503 (10)0.0395 (9)0.0060 (7)0.0089 (7)0.0314 (8)
C50.0354 (9)0.0321 (8)0.0369 (8)0.0016 (6)0.0083 (7)0.0188 (7)
C60.0291 (8)0.0340 (8)0.0418 (9)0.0078 (6)0.0106 (7)0.0205 (7)
C70.0335 (8)0.0283 (8)0.0337 (8)0.0033 (6)0.0067 (6)0.0110 (7)
C80.0306 (8)0.0358 (8)0.0378 (8)0.0041 (6)0.0110 (7)0.0161 (7)
C90.0412 (10)0.0369 (9)0.0508 (10)0.0190 (7)0.0179 (8)0.0228 (8)
C100.0513 (11)0.0324 (9)0.0497 (11)0.0197 (8)0.0149 (9)0.0166 (8)
Cl10.0565 (3)0.0506 (3)0.0353 (2)0.0058 (2)0.0008 (2)0.0175 (2)
Co10.02117 (15)0.02402 (15)0.01902 (14)0.00459 (10)0.00162 (10)0.00862 (11)
N10.0255 (6)0.0329 (7)0.0226 (6)0.0051 (5)0.0004 (5)0.0104 (5)
N20.0247 (6)0.0420 (7)0.0260 (6)0.0001 (5)0.0020 (5)0.0179 (6)
N30.0235 (6)0.0316 (6)0.0256 (6)0.0061 (5)0.0038 (5)0.0127 (5)
N40.0290 (7)0.0328 (7)0.0353 (7)0.0105 (5)0.0103 (5)0.0166 (6)
O10.0505 (8)0.0261 (6)0.0355 (6)0.0007 (5)0.0115 (5)0.0110 (5)
O20.0597 (10)0.0521 (9)0.0657 (10)0.0088 (7)0.0033 (8)0.0025 (8)
O30.0763 (12)0.0472 (9)0.0683 (10)0.0111 (8)0.0051 (9)0.0147 (8)
Geometric parameters (Å, º) top
C1—C21.354 (3)C8—N41.363 (2)
C1—N21.367 (2)C8—H100.9300
C1—H10.9300C9—N41.466 (2)
C2—N11.380 (2)C9—C101.508 (3)
C2—H20.9300C9—H110.9700
C3—N11.319 (2)C9—H120.9700
C3—N21.348 (2)C10—C10ii1.518 (3)
C3—H30.9300C10—H130.9700
C4—N21.468 (2)C10—H140.9700
C4—C51.518 (3)Co1—N1iii2.1265 (18)
C4—H40.9700Co1—N12.1265 (18)
C4—H50.9700Co1—N32.1355 (18)
C5—C5i1.513 (3)Co1—N3iii2.1355 (18)
C5—H60.9700Co1—O12.1819 (17)
C5—H70.9700Co1—O1iii2.1819 (17)
C6—N31.316 (2)O1—H150.8500
C6—N41.345 (2)O1—H160.8501
C6—H80.9300O2—H170.8501
C7—C81.347 (2)O2—H180.8499
C7—N31.378 (2)O3—H190.8500
C7—H90.9300O3—H200.8501
C2—C1—N2106.40 (14)C9—C10—H13109.1
C2—C1—H1126.8C10ii—C10—H13109.1
N2—C1—H1126.8C9—C10—H14109.1
C1—C2—N1109.55 (16)C10ii—C10—H14109.1
C1—C2—H2125.2H13—C10—H14107.8
N1—C2—H2125.2N1iii—Co1—N1180.0
N1—C3—N2111.34 (14)N1iii—Co1—N393.49 (6)
N1—C3—H3124.3N1—Co1—N386.51 (6)
N2—C3—H3124.3N1iii—Co1—N3iii86.51 (6)
N2—C4—C5112.55 (14)N1—Co1—N3iii93.49 (6)
N2—C4—H4109.1N3—Co1—N3iii180.0
C5—C4—H4109.1N1iii—Co1—O188.40 (6)
N2—C4—H5109.1N1—Co1—O191.60 (6)
C5—C4—H5109.1N3—Co1—O188.99 (6)
H4—C4—H5107.8N3iii—Co1—O191.01 (6)
C5i—C5—C4113.60 (19)N1iii—Co1—O1iii91.60 (6)
C5i—C5—H6108.8N1—Co1—O1iii88.40 (6)
C4—C5—H6108.8N3—Co1—O1iii91.01 (6)
C5i—C5—H7108.8N3iii—Co1—O1iii88.99 (6)
C4—C5—H7108.8O1—Co1—O1iii180.0
H6—C5—H7107.7C3—N1—C2105.50 (14)
N3—C6—N4111.80 (15)C3—N1—Co1126.67 (11)
N3—C6—H8124.1C2—N1—Co1127.81 (12)
N4—C6—H8124.1C3—N2—C1107.20 (14)
C8—C7—N3109.45 (15)C3—N2—C4125.39 (15)
C8—C7—H9125.3C1—N2—C4127.34 (14)
N3—C7—H9125.3C6—N3—C7105.19 (14)
C7—C8—N4106.96 (15)C6—N3—Co1128.87 (11)
C7—C8—H10126.5C7—N3—Co1125.19 (11)
N4—C8—H10126.5C6—N4—C8106.59 (14)
N4—C9—C10111.41 (14)C6—N4—C9126.86 (15)
N4—C9—H11109.3C8—N4—C9126.17 (14)
C10—C9—H11109.3Co1—O1—H15128.5
N4—C9—H12109.3Co1—O1—H16121.2
C10—C9—H12109.3H15—O1—H16108.9
H11—C9—H12108.0H17—O2—H18106.8
C9—C10—C10ii112.6 (2)H19—O3—H20109.6
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1, z+2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H15···O3iv0.851.942.781 (2)169
O1—H16···Cl10.852.353.1728 (19)165
O2—H17···Cl1iv0.852.323.172 (2)176
O2—H18···Cl1v0.852.443.292 (3)175
O3—H19···O20.851.992.829 (3)171
O3—H20···Cl10.852.413.261 (3)174
Symmetry codes: (iv) x+1, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C10H14N4)2(H2O)2]Cl2·4H2O
Mr618.43
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.969 (6), 9.979 (6), 10.259 (7)
α, β, γ (°)114.97 (2), 90.83 (3), 93.70 (3)
V3)737.3 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.44 × 0.37 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.718, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
7288, 3348, 3018
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.084, 1.14
No. of reflections3348
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.23

Computer programs: RAPID-AUTO (Rigaku 1998), CrystalStructure (Rigaku/MSC 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N12.1265 (18)Co1—O12.1819 (17)
Co1—N32.1355 (18)
N1i—Co1—N1180.0N1—Co1—O191.60 (6)
N1—Co1—N386.51 (6)N3—Co1—O188.99 (6)
N3—Co1—N3i180.0N1—Co1—O1i88.40 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H15···O3ii0.851.942.781 (2)169.3
O1—H16···Cl10.852.353.1728 (19)164.5
O2—H17···Cl1ii0.852.323.172 (2)175.6
O2—H18···Cl1iii0.852.443.292 (3)174.6
O3—H19···O20.851.992.829 (3)170.8
O3—H20···Cl10.852.413.261 (3)173.8
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20872030), the Research Foundation of Heilongjiang Provincial Education Department (grant Nos. 11513073), the Project of the Special Fund of the Science and Technology Innovation People of Harbin (grant Nos. RC2006QN018001) and Heilongjiang University.

References

First citationDong, G.-C. & Zhang, R.-C. (2006). Acta Cryst. E62, m1847–m1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m370-m371
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds