metal-organic compounds
catena-Poly[[diaquacobalt(II)]-bis(μ-3-carboxyadamantane-1-carboxylato-κ2O1:O3)]
aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn
In the title compound, [Co(C12H15O4)2(H2O)2]n, adjacent CoII atoms ( symmetry) are bridged by 3-carboxyadamantane-1-carboxylate anions, forming a chain running along [001]. Interchain O—H⋯O hydrogen bonds link the chains into layers parallel to (100); the layers are further connected via interlayer hydrogen bonds interactions, forming a three-dimensional framework.
Related literature
For related compounds, see: Nielsen et al. (2008); Zhao et al. (2007); Zheng et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809007387/ng2552sup1.cif
contains datablocks ptcLa, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007387/ng2552Isup2.hkl
Adamantane-1,3-dicarboxylic acid (H2adc) (0.0666 g, 0.3 mmol), 1 M NaOH (0.5 ml, 0.5 mmol) was consequently added to 15 mol aqueous solution, then the mixture was heated constantly at 90 °C and stirred for 30 min, yielding colorless solution, to which was added CoCl2.6H2O (0.2485 g, 1.0 mmol) and continually stirred for 30 min, then the purple solution (pH = 5.12) was cooled to room temperature and laid undisturbed, purple block-like crystals was afforded after two weeks.
H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Co(C12H15O4)2(H2O)2] | F(000) = 1140 |
Mr = 541.44 | Dx = 1.565 Mg m−3 |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 20865 reflections |
a = 10.718 (2) Å | θ = 3.1–27.5° |
b = 23.638 (5) Å | µ = 0.81 mm−1 |
c = 9.0726 (18) Å | T = 293 K |
V = 2298.6 (8) Å3 | Block, purple |
Z = 4 | 0.10 × 0.10 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 2622 independent reflections |
Radiation source: fine-focus sealed tube | 2145 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 0 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −30→30 |
Tmin = 0.921, Tmax = 0.925 | l = −11→11 |
20865 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.9177P] where P = (Fo2 + 2Fc2)/3 |
2622 reflections | (Δ/σ)max = 0.001 |
161 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Co(C12H15O4)2(H2O)2] | V = 2298.6 (8) Å3 |
Mr = 541.44 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 10.718 (2) Å | µ = 0.81 mm−1 |
b = 23.638 (5) Å | T = 293 K |
c = 9.0726 (18) Å | 0.10 × 0.10 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 2622 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2145 reflections with I > 2σ(I) |
Tmin = 0.921, Tmax = 0.925 | Rint = 0.033 |
20865 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.35 e Å−3 |
2622 reflections | Δρmin = −0.30 e Å−3 |
161 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co | 0.5000 | 0.5000 | 0.0000 | 0.02148 (11) | |
C1 | 0.50924 (15) | 0.62852 (7) | 0.64285 (18) | 0.0239 (3) | |
C2 | 0.37038 (16) | 0.64210 (7) | 0.61757 (18) | 0.0300 (4) | |
H2A | 0.3213 | 0.6077 | 0.6246 | 0.036* | |
H2B | 0.3413 | 0.6683 | 0.6924 | 0.036* | |
C3 | 0.35442 (17) | 0.66835 (9) | 0.46523 (19) | 0.0343 (4) | |
H3A | 0.2660 | 0.6770 | 0.4490 | 0.041* | |
C4 | 0.39899 (16) | 0.62682 (8) | 0.34654 (18) | 0.0310 (4) | |
H4A | 0.3497 | 0.5924 | 0.3511 | 0.037* | |
H4B | 0.3878 | 0.6435 | 0.2498 | 0.037* | |
C5 | 0.53696 (15) | 0.61264 (7) | 0.37055 (16) | 0.0212 (3) | |
C6 | 0.55413 (17) | 0.58683 (7) | 0.52439 (16) | 0.0256 (3) | |
H6A | 0.6415 | 0.5780 | 0.5403 | 0.031* | |
H6B | 0.5069 | 0.5519 | 0.5315 | 0.031* | |
C7 | 0.4296 (2) | 0.72253 (8) | 0.4553 (2) | 0.0394 (5) | |
H7A | 0.4012 | 0.7490 | 0.5297 | 0.047* | |
H7B | 0.4176 | 0.7398 | 0.3593 | 0.047* | |
C8 | 0.56719 (19) | 0.70952 (7) | 0.47855 (19) | 0.0327 (4) | |
H8A | 0.6155 | 0.7446 | 0.4718 | 0.039* | |
C9 | 0.58580 (17) | 0.68311 (7) | 0.63123 (18) | 0.0295 (4) | |
H9A | 0.5594 | 0.7096 | 0.7068 | 0.035* | |
H9B | 0.6735 | 0.6748 | 0.6465 | 0.035* | |
C10 | 0.61268 (16) | 0.66778 (7) | 0.36080 (18) | 0.0278 (4) | |
H10A | 0.7005 | 0.6597 | 0.3758 | 0.033* | |
H10B | 0.6028 | 0.6844 | 0.2637 | 0.033* | |
C11 | 0.58484 (15) | 0.57136 (7) | 0.25371 (16) | 0.0247 (3) | |
O1 | 0.52461 (12) | 0.56998 (5) | 0.13165 (12) | 0.0296 (3) | |
O2 | 0.67854 (12) | 0.54217 (6) | 0.27703 (13) | 0.0378 (3) | |
C12 | 0.51789 (16) | 0.60130 (7) | 0.79318 (18) | 0.0280 (4) | |
O3 | 0.51926 (19) | 0.63717 (6) | 0.90404 (15) | 0.0615 (5) | |
H1 | 0.5154 | 0.6209 | 0.9823 | 0.074* | |
O4 | 0.51779 (12) | 0.55044 (5) | 0.80980 (13) | 0.0312 (3) | |
O5 | 0.69310 (12) | 0.48644 (6) | 0.00823 (12) | 0.0314 (3) | |
H2 | 0.7197 | 0.5019 | 0.0807 | 0.038* | |
H3 | 0.7333 | 0.5010 | −0.0575 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.02775 (18) | 0.02296 (17) | 0.01371 (17) | 0.00182 (11) | 0.00009 (11) | 0.00032 (11) |
C1 | 0.0317 (9) | 0.0242 (7) | 0.0158 (7) | 0.0027 (6) | 0.0009 (6) | 0.0004 (6) |
C2 | 0.0277 (9) | 0.0389 (9) | 0.0232 (8) | −0.0011 (7) | 0.0058 (7) | −0.0017 (7) |
C3 | 0.0239 (9) | 0.0516 (11) | 0.0274 (8) | 0.0131 (8) | −0.0004 (7) | 0.0010 (8) |
C4 | 0.0250 (9) | 0.0467 (10) | 0.0213 (8) | 0.0020 (7) | −0.0039 (6) | −0.0009 (7) |
C5 | 0.0233 (7) | 0.0267 (7) | 0.0137 (6) | 0.0007 (6) | −0.0009 (6) | −0.0011 (6) |
C6 | 0.0361 (9) | 0.0243 (7) | 0.0164 (7) | 0.0041 (7) | 0.0003 (6) | −0.0009 (6) |
C7 | 0.0554 (13) | 0.0336 (9) | 0.0292 (9) | 0.0186 (9) | 0.0036 (9) | 0.0067 (8) |
C8 | 0.0438 (11) | 0.0246 (8) | 0.0296 (9) | −0.0059 (7) | 0.0065 (8) | 0.0010 (7) |
C9 | 0.0349 (9) | 0.0297 (8) | 0.0239 (8) | −0.0043 (7) | −0.0014 (7) | −0.0066 (7) |
C10 | 0.0303 (9) | 0.0308 (8) | 0.0222 (8) | −0.0032 (7) | 0.0047 (6) | 0.0028 (7) |
C11 | 0.0298 (8) | 0.0283 (7) | 0.0160 (7) | −0.0005 (6) | 0.0006 (6) | 0.0003 (6) |
O1 | 0.0444 (7) | 0.0296 (6) | 0.0148 (5) | 0.0054 (5) | −0.0070 (5) | −0.0027 (5) |
O2 | 0.0362 (7) | 0.0532 (8) | 0.0239 (6) | 0.0179 (6) | −0.0045 (5) | −0.0106 (6) |
C12 | 0.0373 (10) | 0.0288 (8) | 0.0181 (8) | 0.0048 (7) | 0.0004 (6) | −0.0005 (7) |
O3 | 0.1393 (17) | 0.0298 (7) | 0.0155 (6) | 0.0092 (8) | −0.0021 (7) | −0.0003 (6) |
O4 | 0.0484 (8) | 0.0268 (6) | 0.0185 (6) | −0.0005 (5) | 0.0019 (5) | 0.0024 (5) |
O5 | 0.0289 (7) | 0.0377 (6) | 0.0274 (6) | 0.0007 (5) | 0.0016 (5) | −0.0031 (5) |
Co—O1i | 2.0574 (12) | C5—C10 | 1.538 (2) |
Co—O1 | 2.0574 (12) | C6—H6A | 0.9700 |
Co—O5 | 2.0956 (14) | C6—H6B | 0.9700 |
Co—O5i | 2.0956 (14) | C7—C8 | 1.522 (3) |
Co—O4ii | 2.1061 (12) | C7—H7A | 0.9700 |
Co—O4iii | 2.1061 (12) | C7—H7B | 0.9700 |
C1—C12 | 1.511 (2) | C8—C9 | 1.532 (2) |
C1—C9 | 1.533 (2) | C8—C10 | 1.534 (2) |
C1—C6 | 1.535 (2) | C8—H8A | 0.9800 |
C1—C2 | 1.540 (2) | C9—H9A | 0.9700 |
C2—C3 | 1.525 (2) | C9—H9B | 0.9700 |
C2—H2A | 0.9700 | C10—H10A | 0.9700 |
C2—H2B | 0.9700 | C10—H10B | 0.9700 |
C3—C7 | 1.516 (3) | C11—O2 | 1.237 (2) |
C3—C4 | 1.533 (2) | C11—O1 | 1.2823 (19) |
C3—H3A | 0.9800 | C12—O4 | 1.212 (2) |
C4—C5 | 1.532 (2) | C12—O3 | 1.316 (2) |
C4—H4A | 0.9700 | O3—H1 | 0.8083 |
C4—H4B | 0.9700 | O4—Coiv | 2.1061 (12) |
C5—C11 | 1.530 (2) | O5—H2 | 0.8045 |
C5—C6 | 1.534 (2) | O5—H3 | 0.8128 |
O1i—Co—O1 | 180.00 (6) | C6—C5—C10 | 109.03 (13) |
O1i—Co—O5 | 91.39 (5) | C5—C6—C1 | 110.11 (13) |
O1—Co—O5 | 88.61 (5) | C5—C6—H6A | 109.6 |
O1i—Co—O5i | 88.61 (5) | C1—C6—H6A | 109.6 |
O1—Co—O5i | 91.39 (5) | C5—C6—H6B | 109.6 |
O5—Co—O5i | 180.00 (6) | C1—C6—H6B | 109.6 |
O1i—Co—O4ii | 90.51 (5) | H6A—C6—H6B | 108.2 |
O1—Co—O4ii | 89.49 (5) | C3—C7—C8 | 109.63 (14) |
O5—Co—O4ii | 88.49 (5) | C3—C7—H7A | 109.7 |
O5i—Co—O4ii | 91.51 (5) | C8—C7—H7A | 109.7 |
O1i—Co—O4iii | 89.49 (5) | C3—C7—H7B | 109.7 |
O1—Co—O4iii | 90.51 (5) | C8—C7—H7B | 109.7 |
O5—Co—O4iii | 91.51 (5) | H7A—C7—H7B | 108.2 |
O5i—Co—O4iii | 88.49 (5) | C7—C8—C9 | 109.50 (15) |
O4ii—Co—O4iii | 180.00 (5) | C7—C8—C10 | 109.98 (15) |
C12—C1—C9 | 112.81 (14) | C9—C8—C10 | 109.04 (14) |
C12—C1—C6 | 109.83 (13) | C7—C8—H8A | 109.4 |
C9—C1—C6 | 108.93 (14) | C9—C8—H8A | 109.4 |
C12—C1—C2 | 106.41 (13) | C10—C8—H8A | 109.4 |
C9—C1—C2 | 109.37 (14) | C8—C9—C1 | 109.59 (13) |
C6—C1—C2 | 109.42 (14) | C8—C9—H9A | 109.8 |
C3—C2—C1 | 109.17 (13) | C1—C9—H9A | 109.8 |
C3—C2—H2A | 109.8 | C8—C9—H9B | 109.8 |
C1—C2—H2A | 109.8 | C1—C9—H9B | 109.8 |
C3—C2—H2B | 109.8 | H9A—C9—H9B | 108.2 |
C1—C2—H2B | 109.8 | C8—C10—C5 | 109.71 (13) |
H2A—C2—H2B | 108.3 | C8—C10—H10A | 109.7 |
C7—C3—C2 | 109.76 (15) | C5—C10—H10A | 109.7 |
C7—C3—C4 | 109.50 (15) | C8—C10—H10B | 109.7 |
C2—C3—C4 | 109.95 (15) | C5—C10—H10B | 109.7 |
C7—C3—H3A | 109.2 | H10A—C10—H10B | 108.2 |
C2—C3—H3A | 109.2 | O2—C11—O1 | 122.85 (15) |
C4—C3—H3A | 109.2 | O2—C11—C5 | 120.66 (14) |
C5—C4—C3 | 109.93 (13) | O1—C11—C5 | 116.47 (14) |
C5—C4—H4A | 109.7 | C11—O1—Co | 125.90 (11) |
C3—C4—H4A | 109.7 | O4—C12—O3 | 122.98 (16) |
C5—C4—H4B | 109.7 | O4—C12—C1 | 122.33 (15) |
C3—C4—H4B | 109.7 | O3—C12—C1 | 114.61 (15) |
H4A—C4—H4B | 108.2 | C12—O3—H1 | 111.4 |
C11—C5—C4 | 111.41 (13) | C12—O4—Coiv | 131.58 (11) |
C11—C5—C6 | 109.66 (13) | Co—O5—H2 | 108.0 |
C4—C5—C6 | 109.40 (13) | Co—O5—H3 | 115.6 |
C11—C5—C10 | 108.90 (13) | H2—O5—H3 | 102.6 |
C4—C5—C10 | 108.42 (13) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) x, y, z−1; (iv) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O1iv | 0.81 | 1.82 | 2.6058 (19) | 166 |
O5—H2···O2 | 0.80 | 2.07 | 2.7762 (18) | 147 |
O5—H3···O2v | 0.81 | 2.02 | 2.8334 (18) | 175 |
Symmetry codes: (iv) x, y, z+1; (v) −x+3/2, y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C12H15O4)2(H2O)2] |
Mr | 541.44 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 293 |
a, b, c (Å) | 10.718 (2), 23.638 (5), 9.0726 (18) |
V (Å3) | 2298.6 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.10 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.921, 0.925 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20865, 2622, 2145 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.086, 1.06 |
No. of reflections | 2622 |
No. of parameters | 161 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.30 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Co—O1 | 2.0574 (12) | Co—O4i | 2.1061 (12) |
Co—O5 | 2.0956 (14) |
Symmetry code: (i) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O1ii | 0.81 | 1.82 | 2.6058 (19) | 166 |
O5—H2···O2 | 0.80 | 2.07 | 2.7762 (18) | 147 |
O5—H3···O2iii | 0.81 | 2.02 | 2.8334 (18) | 175 |
Symmetry codes: (ii) x, y, z+1; (iii) −x+3/2, y, z−1/2. |
Acknowledgements
This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).
References
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Nielsen, R. B., Kongshaug, K. O. & Fjellvåg, H. (2008). J. Mater. Chem. 18, 1002–1007. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m2150. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, Y. Q., Lin, J. L., Xie, H. Z. & Wang, X. W. (2008). Inorg. Chem. 47, 10280–10287. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The cambridge Structural Database (Version 5.30, February 2009) lists few examples of metal (II) adamantane-1,3-dicarboxylates (Nielsen et al., 2008; Zhao et al., 2007). The dicarboxylate group is rigid, much more different from the aliphatic dicarboxylic acids (Zheng et al., 2008), effected severely by spacial steric hindrance. The asymmetric unit of the title compoud consists of one Co2+ cation, one aqua ligand and one Hadc- anion (H2adc = adamantane-1,3-dicarboxylic acid) (Fig.1). The Co atoms at the Wckoff 4a sites are crystallographically imposed by iversion center and are each located in an elongated octahedral coordination sphere defined by two aqua ligands and four carboxylate oxygen atoms from four 3-carboxyadamantane-1-carboxylate anions. The axial Co—O bond distances averaged at 2.106 (1) Å are slightly longer than the equatorial ones of 2.078 (1) Å. The trans- and cisoid O—Co—O angles fall in the regions 88.49 (5)–91.51 (5)° and 180°, respectively, exhibiting slight diviation from the corresponding values for a regular geometry (Table 1). Each carboxylate anion monodentately coordinates one Co2+ ion in syn fashion. Interestingly, one of the two carboxylate anions from each ligand is protonated and coordinates one Co2+ ion by carbonyl oxygen atom, which is rare in former reports. The Co2+ ions are bridged by 3-carboxyadamantane-1-carboxylate anions to form one-dimensional chains running along the [001] direction. On the basis of the interchain O—H···O hydrogen bonds (Table 2),these chains are assembled into layers parallel to (100) (Fig.2). The layers are further connected to form a three-dimensional framework via interlayer hydrogen bonds interaction.