Related literature
For background, see: Xiong et al. (2002
)
Experimental
Data collection
Rigaku Mercury CCD diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2000 ) Tmin = 0.773, Tmax = 1.000 (expected range = 0.615–0.795) 3817 measured reflections 2286 independent reflections 2104 reflections with I > 2σ(I) Rint = 0.027
|
Cd1—N5 | 2.293 (2) | Cd1—O3 | 2.312 (3) | Cd1—N1 | 2.396 (2) | Symmetry code: (i) -x+1, -y, -z+1. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O4—H4B⋯N2 | 0.85 (3) | 2.02 (3) | 2.860 (4) | 166 (4) | O4—H4A⋯O2ii | 0.85 (3) | 1.92 (3) | 2.767 (4) | 170 (4) | O1—H1⋯O4iii | 0.89 (3) | 1.68 (3) | 2.566 (4) | 170 (5) | O3—H3B⋯N4iv | 0.86 (2) | 1.96 (3) | 2.804 (4) | 168 (4) | O3—H3A⋯N3v | 0.90 (2) | 1.92 (2) | 2.806 (4) | 172 (3) | Symmetry codes: (ii) -x, -y+1, -z; (iii) x-1, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1. | |
Data collection: CrystalClear (Rigaku, 2000
); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: X-SEED (Barbour, 2001
); software used to prepare material for publication: SHELXL97.
Supporting information
A mixture of Cd(NO3)2.4H2O (77 mg, 0.25 mmol), sodium azide(33 mg, 0.5 mmol) and 6-cyanopyridine-3-carboxylic acid (74 mg, 0.5 mmol) was suspended in water (10 ml) and heated in a teflon-lined steel bomb at 160 ° C for 3 days. The colorless crystals were obtained.
H atoms bonded to C were located geometrically (C—H = 0.95 Å) with Uiso(H) = 1.2 Ueq(C). H atoms bonded to O were located by difference maps and refined with a distance restraint of O—H = 0.87 (3) Å. The displacement factors were freely refined.
Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Diaquabis[5-(5-carboxy-2-pyridyl)tetrazolato-
κ2N1,
N5]cadmium(II) dihydrate
top Crystal data top [Cd(C7H4N5O2)2(H2O)2]·2H2O | Z = 1 |
Mr = 564.77 | F(000) = 282 |
Triclinic, P1 | Dx = 1.855 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1018 (2) Å | Cell parameters from 612 reflections |
b = 7.3805 (1) Å | θ = 3.0–27.5° |
c = 12.383 (2) Å | µ = 1.15 mm−1 |
α = 84.17 (3)° | T = 293 K |
β = 88.91 (3)° | Prism, colorless |
γ = 65.71 (2)° | 0.20 × 0.20 × 0.20 mm |
V = 505.51 (8) Å3 | |
Data collection top Rigaku Mercury CCD diffractometer | 2286 independent reflections |
Radiation source: fine-focus sealed tube | 2104 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.4°, θmin = 3.0° |
CCD_Profile_fitting scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | k = −7→9 |
Tmin = 0.773, Tmax = 1.000 | l = −15→15 |
3817 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0287P)2 + 0.1909P] where P = (Fo2 + 2Fc2)/3 |
2286 reflections | (Δ/σ)max = 0.001 |
171 parameters | Δρmax = 0.39 e Å−3 |
5 restraints | Δρmin = −0.70 e Å−3 |
Crystal data top [Cd(C7H4N5O2)2(H2O)2]·2H2O | γ = 65.71 (2)° |
Mr = 564.77 | V = 505.51 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.1018 (2) Å | Mo Kα radiation |
b = 7.3805 (1) Å | µ = 1.15 mm−1 |
c = 12.383 (2) Å | T = 293 K |
α = 84.17 (3)° | 0.20 × 0.20 × 0.20 mm |
β = 88.91 (3)° | |
Data collection top Rigaku Mercury CCD diffractometer | 2286 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) | 2104 reflections with I > 2σ(I) |
Tmin = 0.773, Tmax = 1.000 | Rint = 0.027 |
3817 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.037 | 5 restraints |
wR(F2) = 0.078 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.39 e Å−3 |
2286 reflections | Δρmin = −0.70 e Å−3 |
171 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd1 | 0.5000 | 0.0000 | 0.5000 | 0.03880 (13) | |
O1 | −0.1058 (5) | −0.1234 (4) | 0.1759 (2) | 0.0614 (8) | |
N1 | 0.3050 (5) | 0.1080 (4) | 0.32445 (19) | 0.0328 (6) | |
C1 | −0.1196 (6) | 0.0465 (5) | 0.1283 (3) | 0.0401 (7) | |
H1 | −0.217 (7) | −0.160 (7) | 0.152 (4) | 0.098 (17)* | |
O2 | −0.2500 (5) | 0.1386 (4) | 0.0504 (2) | 0.0580 (7) | |
N2 | 0.5549 (5) | 0.4825 (4) | 0.2873 (2) | 0.0404 (6) | |
C2 | 0.0443 (6) | 0.1228 (4) | 0.1777 (2) | 0.0338 (7) | |
O3 | 0.1539 (5) | 0.2229 (4) | 0.5726 (2) | 0.0512 (6) | |
N3 | 0.7080 (5) | 0.4857 (4) | 0.3617 (2) | 0.0461 (7) | |
C3 | 0.0743 (6) | 0.2851 (5) | 0.1257 (3) | 0.0425 (8) | |
H3 | −0.0060 | 0.3468 | 0.0581 | 0.051* | |
H3A | 0.195 (6) | 0.321 (4) | 0.587 (2) | 0.031 (8)* | |
H3B | 0.015 (5) | 0.273 (5) | 0.540 (3) | 0.052 (11)* | |
O4 | 0.6141 (5) | 0.7305 (4) | 0.1064 (2) | 0.0579 (7) | |
N4 | 0.7355 (5) | 0.3463 (4) | 0.4431 (2) | 0.0450 (7) | |
C4 | 0.2210 (6) | 0.3572 (5) | 0.1722 (3) | 0.0424 (8) | |
H4 | 0.2453 | 0.4676 | 0.1367 | 0.051* | |
H4A | 0.492 (6) | 0.781 (6) | 0.063 (3) | 0.062 (12)* | |
H4B | 0.571 (7) | 0.666 (6) | 0.157 (3) | 0.068 (13)* | |
N5 | 0.6029 (5) | 0.2491 (4) | 0.4230 (2) | 0.0354 (6) | |
C5 | 0.1627 (6) | 0.0381 (5) | 0.2777 (2) | 0.0366 (7) | |
H5 | 0.1418 | −0.0732 | 0.3141 | 0.044* | |
C6 | 0.3338 (5) | 0.2658 (4) | 0.2722 (2) | 0.0326 (6) | |
C7 | 0.4943 (6) | 0.3343 (4) | 0.3263 (2) | 0.0340 (7) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd1 | 0.0443 (2) | 0.0424 (2) | 0.03052 (19) | −0.02092 (16) | −0.00857 (14) | 0.00836 (13) |
O1 | 0.075 (2) | 0.0752 (19) | 0.0503 (16) | −0.0506 (17) | −0.0210 (14) | 0.0103 (13) |
N1 | 0.0369 (15) | 0.0352 (13) | 0.0274 (13) | −0.0169 (12) | 0.0003 (10) | 0.0014 (10) |
C1 | 0.0366 (19) | 0.054 (2) | 0.0307 (16) | −0.0186 (16) | 0.0024 (13) | −0.0080 (14) |
O2 | 0.0524 (17) | 0.0714 (17) | 0.0467 (15) | −0.0237 (14) | −0.0215 (12) | 0.0051 (12) |
N2 | 0.0446 (17) | 0.0393 (15) | 0.0422 (16) | −0.0237 (13) | −0.0003 (12) | 0.0031 (11) |
C2 | 0.0324 (17) | 0.0403 (16) | 0.0252 (15) | −0.0118 (13) | −0.0002 (12) | −0.0016 (12) |
O3 | 0.0495 (18) | 0.0497 (15) | 0.0547 (16) | −0.0199 (14) | −0.0028 (13) | −0.0076 (12) |
N3 | 0.0491 (19) | 0.0470 (16) | 0.0503 (18) | −0.0276 (15) | 0.0015 (14) | −0.0062 (13) |
C3 | 0.042 (2) | 0.0482 (19) | 0.0329 (17) | −0.0168 (16) | −0.0089 (14) | 0.0099 (14) |
O4 | 0.0610 (19) | 0.0764 (19) | 0.0474 (16) | −0.0446 (16) | −0.0197 (14) | 0.0201 (14) |
N4 | 0.0446 (18) | 0.0470 (16) | 0.0478 (17) | −0.0231 (14) | −0.0064 (13) | −0.0032 (13) |
C4 | 0.046 (2) | 0.0419 (18) | 0.0370 (18) | −0.0190 (16) | −0.0024 (14) | 0.0105 (13) |
N5 | 0.0352 (15) | 0.0353 (13) | 0.0381 (14) | −0.0178 (12) | −0.0034 (11) | 0.0014 (11) |
C5 | 0.0393 (19) | 0.0405 (17) | 0.0315 (16) | −0.0194 (15) | −0.0029 (13) | 0.0032 (12) |
C6 | 0.0321 (17) | 0.0321 (15) | 0.0312 (16) | −0.0114 (13) | 0.0011 (12) | 0.0000 (12) |
C7 | 0.0345 (17) | 0.0319 (15) | 0.0336 (16) | −0.0128 (13) | 0.0034 (12) | 0.0017 (12) |
Geometric parameters (Å, º) top Cd1—N5 | 2.293 (2) | C2—C5 | 1.398 (4) |
Cd1—N5i | 2.293 (2) | O3—H3A | 0.90 (2) |
Cd1—O3i | 2.312 (3) | O3—H3B | 0.86 (2) |
Cd1—O3 | 2.312 (3) | N3—N4 | 1.325 (4) |
Cd1—N1 | 2.396 (2) | C3—C4 | 1.374 (5) |
Cd1—N1i | 2.396 (2) | C3—H3 | 0.9500 |
O1—C1 | 1.301 (4) | O4—H4A | 0.85 (3) |
O1—H1 | 0.89 (3) | O4—H4B | 0.85 (3) |
N1—C5 | 1.342 (4) | N4—N5 | 1.324 (4) |
N1—C6 | 1.348 (4) | C4—C6 | 1.394 (4) |
C1—O2 | 1.215 (4) | C4—H4 | 0.9500 |
C1—C2 | 1.499 (4) | N5—C7 | 1.343 (4) |
N2—N3 | 1.332 (4) | C5—H5 | 0.9500 |
N2—C7 | 1.336 (4) | C6—C7 | 1.472 (4) |
C2—C3 | 1.379 (4) | | |
| | | |
N5—Cd1—N5i | 180.0 | C5—C2—C1 | 121.8 (3) |
N5—Cd1—O3i | 87.03 (10) | Cd1—O3—H3A | 103 (2) |
N5i—Cd1—O3i | 92.97 (10) | Cd1—O3—H3B | 124 (3) |
N5—Cd1—O3 | 92.97 (10) | H3A—O3—H3B | 109 (3) |
N5i—Cd1—O3 | 87.03 (10) | N4—N3—N2 | 109.7 (3) |
O3i—Cd1—O3 | 180.0 | C4—C3—C2 | 119.7 (3) |
N5—Cd1—N1 | 72.97 (9) | C4—C3—H3 | 120.2 |
N5i—Cd1—N1 | 107.03 (9) | C2—C3—H3 | 120.2 |
O3i—Cd1—N1 | 91.55 (9) | H4A—O4—H4B | 103 (4) |
O3—Cd1—N1 | 88.45 (9) | N5—N4—N3 | 109.3 (3) |
N5—Cd1—N1i | 107.03 (9) | C3—C4—C6 | 119.0 (3) |
N5i—Cd1—N1i | 72.97 (9) | C3—C4—H4 | 120.5 |
O3i—Cd1—N1i | 88.45 (9) | C6—C4—H4 | 120.5 |
O3—Cd1—N1i | 91.55 (9) | N4—N5—C7 | 105.1 (2) |
N1—Cd1—N1i | 180.00 (5) | N4—N5—Cd1 | 140.8 (2) |
C1—O1—H1 | 113 (3) | C7—N5—Cd1 | 114.08 (19) |
C5—N1—C6 | 118.3 (2) | N1—C5—C2 | 122.5 (3) |
C5—N1—Cd1 | 127.62 (19) | N1—C5—H5 | 118.7 |
C6—N1—Cd1 | 113.95 (18) | C2—C5—H5 | 118.7 |
O2—C1—O1 | 124.7 (3) | N1—C6—C4 | 122.1 (3) |
O2—C1—C2 | 121.4 (3) | N1—C6—C7 | 116.0 (2) |
O1—C1—C2 | 113.9 (3) | C4—C6—C7 | 121.9 (3) |
N3—N2—C7 | 104.7 (3) | N2—C7—N5 | 111.3 (3) |
C3—C2—C5 | 118.4 (3) | N2—C7—C6 | 126.0 (3) |
C3—C2—C1 | 119.8 (3) | N5—C7—C6 | 122.7 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4B···N2 | 0.85 (3) | 2.02 (3) | 2.860 (4) | 166 (4) |
O4—H4A···O2ii | 0.85 (3) | 1.92 (3) | 2.767 (4) | 170 (4) |
O1—H1···O4iii | 0.89 (3) | 1.68 (3) | 2.566 (4) | 170 (5) |
O3—H3B···N4iv | 0.86 (2) | 1.96 (3) | 2.804 (4) | 168 (4) |
O3—H3A···N3v | 0.90 (2) | 1.92 (2) | 2.806 (4) | 172 (3) |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, y−1, z; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data |
Chemical formula | [Cd(C7H4N5O2)2(H2O)2]·2H2O |
Mr | 564.77 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.1018 (2), 7.3805 (1), 12.383 (2) |
α, β, γ (°) | 84.17 (3), 88.91 (3), 65.71 (2) |
V (Å3) | 505.51 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.15 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
|
Data collection |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2000) |
Tmin, Tmax | 0.773, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3817, 2286, 2104 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.647 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.078, 1.10 |
No. of reflections | 2286 |
No. of parameters | 171 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.70 |
Selected geometric parameters (Å, º) topCd1—N5 | 2.293 (2) | Cd1—O3 | 2.312 (3) |
Cd1—O3i | 2.312 (3) | Cd1—N1 | 2.396 (2) |
| | | |
N5—Cd1—N1 | 72.97 (9) | | |
Symmetry code: (i) −x+1, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4B···N2 | 0.85 (3) | 2.02 (3) | 2.860 (4) | 166 (4) |
O4—H4A···O2ii | 0.85 (3) | 1.92 (3) | 2.767 (4) | 170 (4) |
O1—H1···O4iii | 0.89 (3) | 1.68 (3) | 2.566 (4) | 170 (5) |
O3—H3B···N4iv | 0.86 (2) | 1.96 (3) | 2.804 (4) | 168 (4) |
O3—H3A···N3v | 0.90 (2) | 1.92 (2) | 2.806 (4) | 172 (3) |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, y−1, z; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge financial support from the Zhejiang Provincial Natural Science Foundation of China (grant Nos.Y4080093 and Y407189).
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiong, R. G., Xue, X., Zhao, H., You, X. Z., Abrahams, B. F. & Xue, Z. (2002). Angew. Chem. Int. Ed. 41, 3800–3803. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Hydrothermal reactions involving in situ ligand synthesis have attracted great interests (Xiong et al., 2002). In the contribution, we report the title mononuclear complex (I) based on tetrazol ligand obtained by in situ ligand synthesis.
In the structure of (I), the ligand chelates Cd(II) center through pyridyl N and tetrazol N to form a centrosymmetrical mononuclear complex. Two coordinated water molecules complete the octahedral geometry of Cd(II) center (Fig.1). Two solvent water molecules and carboxylic groups of the ligands form a synthon R44(12) which connects mononuclear unit into a two-dimensional layer structure through hydrogen bonds between solvent water and tetrazol groups (Table. 2). The hydrogen bonds between coordinated water molecules and tetrazol groups result in a three-dimensional structure (Fig.2).