metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m376-m377

Aquabis(benzoato-κO)bis­­(1H-imidazole-κN3)copper(II) monohydrate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn

(Received 28 February 2009; accepted 2 March 2009; online 6 March 2009)

In the title compound, [Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2O, the CuII atom is in a distorted square-pyramidal environment. The mol­ecules are assembled into double chains extending along [010] by N—H⋯O hydrogen bonds. These double chains are linked by O—H⋯O hydrogen bonds, forming layers parallel to ([\overline{1}]02); the layers are linked into a three-dimensional network by van der Waals inter­actions.

Related literature

For general background, see: Escriva et al. (1996[Escriva, E., Sanais, M., Folgado, J. V. & Julia, G. L. (1996). Polyhedron, 15, 3271-3276.]); Mu et al. (2002[Mu, L., Yin, Y. X., Liu, X. H., Yun, S., Liu, X. L. & Miao, F. M. (2002). J. Tianjin Normal Univ. (Nat. Sci. Ed.), 22, 1-4.]); Tian & Chen (2001[Tian, L. & Chen, L. (2001). J. Xiangtan Normal Univ. 23, 34-37.]). For related structures, see: Wang et al. (1999[Wang, Y. Y., Shi, Q., Shi, Q. Z., Gao, Y. C. & Zhou, Z. Y. (1999). Polyhedron, 18, 2009-2015.]); Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2O

  • Mr = 477.96

  • Monoclinic, P 21 /c

  • a = 18.366 (4) Å

  • b = 6.0076 (12) Å

  • c = 23.123 (9) Å

  • β = 122.64 (2)°

  • V = 2148.4 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 293 K

  • 0.60 × 0.27 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.710, Tmax = 0.750

  • 19722 measured reflections

  • 4867 independent reflections

  • 3715 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.120

  • S = 1.15

  • 4867 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—O3 1.9765 (18)
Cu—O1 1.9814 (19)
Cu—N1 1.982 (2)
Cu—N3 1.984 (2)
Cu—O5 2.297 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O6i 0.86 1.88 2.729 (4) 172
N4—H19A⋯O1ii 0.86 2.03 2.886 (3) 177
O5—H51⋯O2iii 0.99 1.96 2.730 (3) 133
O5—H52⋯O4iii 0.97 2.06 2.873 (4) 141
O6—H61⋯O4iii 0.85 1.94 2.729 (4) 155
O6—H62⋯O3 0.86 1.99 2.827 (3) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The copper(II) complexes with carboxylic acid exist extensively and play an important role in a vast range of chemistry and organisums (Escriva, et al., 1996; Tian & Chen, 2001). At the same time, some copper(II) complexes with imidazole ligand show special properties, such as optical properties, magnetic properties and activity of superoxide dismutase, Which have potential applications in material and medicine industry(Mu, et al., 2002). However, investigation of combination copper(II), carboxylic acid and imidazole to design monomeric copper(II) complexes is quite limited. Herein, we report the synthesis, crystal structure of a novel complex [Cu(H2O)(C3H4N2)2 (C6H5COO)2].H2O.

The asymmetric unit of the title compound consists of one Cu(II) ion, two imidazole molecules, two benzoate anions, one aqua ligand and one lattice H2O molecule, As illustrated in Fig. 1. The copper atom is involved in a CuN2O3 chromophore and lies in a distorted square-pyramidal environment. The equatorial positions are occupied by two oxygen atoms from two different benzoate anions and two nitrogen atoms from two different imidazole molecules. The two nitrogen atoms from imidazole ligands and two carboxylate oxygen atoms are in a trans position, as observed in other compounds of copper(II) (Wang, et al., 1999), and the axial position is occupied by O5 atoms. The bond lengths of Cu—N1 and Cu—N3 fall in the range of 1.982 (2) and 1.984 (2) Å, and the Cu—O1 and Cu—O3 bond distances are equal to 1.977 (2) and 1.982 (2) Å, the axial Cu—O5 bond distance is 2.297 (2) Å. The τ index about the central Cu atom is 0.156 Å, suggesting that the square pyramidal coordination geometry is slightly distorted (Addison et al., 1984). The bond length of Cu—O2 and Cu—O4 are 3.034 (3) and 3.040 (3) Å, which is longer than normal bond length of Cu—O, indicating there is no interaction between Cu—O2 and Cu—O4. There are two different benzoate anions in the compound. The plane of benzene ring and carboxylate exhibit nearly perfect coplanarity in the benzoate anion containing C1, but for another benzoate anion, the dihedral angle between benzene ring and carboxylate plane is 16.6 (6)°. The two imidazole ligands are not distortion in the compound and the dihedral angle between two imidazole rings is 67.5 (1)°C. The complex molecules are assembled into one dimension chains extending along the [010] direction through hydrogen bonds between aqua ligand and uncoordinated carboxylate oxygen atoms (O5—H51···O2, O5—H52···O4). Then the one dimension chains generate double chains through hydrogen bonds by nitrogen atom of imidazole provide H19A to carboxylate oxygen atom (O1), the double chains are assembled further into two-dimensional layer parallel to (-1 0 2) by hydrogen bonded of N2—H2A···O6 and O6—H62···O3, the two dimension layers array alternately to generate three dimension network by Van der Waals interactions.

Related literature top

For general background, see: Escriva et al. (1996); Mu et al. (2002); Tian & Chen (2001). For related structures, see: Wang et al. (1999); Addison et al. (1984).

Experimental top

After CuCl2.2H2O (0.1702 g, 1.001 mmol), benzoic acid (0.1221 g, 1.000 mmol) and imidazole (0.1354 g, 1.002 mmol) were completely dissolved in 20 ml mixed solvent of H2O and CH3CH2OH (Vw:Ve = 1:1). Then 1.2 ml (1.0 M) NaOH was dropwise added and the resulting dark blue suspension (pH = 8.0) was subsequently allowed to stir for 1 h. After the suspension was filtrated, the filtrate was allowed to stand at room temperature. The block-like crystals were obtained twenty days later. IR spectroscopic analysis (KBr, υ/cm-1): 3424(w), 1600(m), 1560(m), 1543(w), 1387(m), 1068(m), 717(m).

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated positionand were refined using a riding model, with Uiso(H) = 1.5 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesisand were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 45% probability level.
[Figure 2] Fig. 2. The double chains of the title complex pallel to [010].
Aquabis(benzoato-κO)bis(1H-imidazole-κN3)copper(II) monohydrate top
Crystal data top
[Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2OF(000) = 988
Mr = 477.96Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19722 reflections
a = 18.366 (4) Åθ = 3.0–27.4°
b = 6.0076 (12) ŵ = 1.06 mm1
c = 23.123 (9) ÅT = 293 K
β = 122.64 (2)°Block, purple
V = 2148.4 (12) Å30.60 × 0.27 × 0.26 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4867 independent reflections
Radiation source: fine-focus sealed tube3715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 2323
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.710, Tmax = 0.750l = 2929
19722 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.849P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.002
4867 reflectionsΔρmax = 0.66 e Å3
281 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (7)
Crystal data top
[Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2OV = 2148.4 (12) Å3
Mr = 477.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.366 (4) ŵ = 1.06 mm1
b = 6.0076 (12) ÅT = 293 K
c = 23.123 (9) Å0.60 × 0.27 × 0.26 mm
β = 122.64 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4867 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3715 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.750Rint = 0.034
19722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.15Δρmax = 0.66 e Å3
4867 reflectionsΔρmin = 0.57 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.781397 (17)0.46304 (5)0.649481 (14)0.03036 (13)
O10.84502 (12)0.4688 (3)0.60237 (9)0.0404 (4)
O20.80700 (15)0.8199 (3)0.56883 (12)0.0562 (6)
C10.83217 (16)0.6360 (5)0.56317 (13)0.0373 (6)
C20.84906 (16)0.5985 (4)0.50741 (13)0.0356 (5)
C30.8361 (2)0.7703 (5)0.46303 (16)0.0517 (7)
H3A0.81660.90770.46790.062*
C40.8520 (2)0.7397 (6)0.41151 (17)0.0644 (9)
H4A0.84240.85600.38160.077*
C50.8814 (3)0.5408 (6)0.40419 (18)0.0669 (10)
H5A0.89360.52240.37030.080*
C60.8931 (3)0.3686 (6)0.4468 (2)0.0767 (11)
H6A0.91240.23180.44130.092*
C70.8765 (2)0.3957 (5)0.49800 (17)0.0567 (8)
H7A0.88400.27640.52630.068*
O30.71958 (11)0.4369 (3)0.69750 (9)0.0362 (4)
O40.69831 (15)0.8000 (3)0.69427 (12)0.0571 (6)
C80.69452 (15)0.6102 (4)0.71336 (13)0.0359 (5)
C90.65960 (17)0.5768 (4)0.75849 (14)0.0382 (6)
C100.67548 (19)0.3796 (5)0.79480 (15)0.0460 (7)
H10A0.70460.26380.78900.055*
C110.6480 (2)0.3556 (6)0.83958 (18)0.0622 (9)
H11A0.66080.22610.86540.075*
C120.6016 (3)0.5241 (6)0.8460 (2)0.0694 (10)
H12A0.58250.50690.87570.083*
C130.5835 (3)0.7162 (6)0.8088 (2)0.0687 (10)
H13A0.55110.82770.81250.082*
C140.6135 (2)0.7444 (5)0.76576 (18)0.0537 (8)
H14A0.60250.87680.74160.064*
N10.67162 (14)0.4759 (4)0.55835 (11)0.0384 (5)
N20.55699 (14)0.6160 (5)0.46720 (12)0.0502 (6)
H2A0.51560.70600.44110.060*
N30.88911 (13)0.5247 (3)0.73940 (11)0.0335 (5)
N41.00928 (13)0.6723 (4)0.82320 (12)0.0433 (5)
H19A1.05350.75850.84470.052*
C150.64338 (19)0.3320 (5)0.50435 (15)0.0524 (7)
H15A0.66900.19650.50610.063*
C160.5725 (2)0.4178 (6)0.44808 (16)0.0598 (9)
H16A0.54060.35320.40470.072*
C170.61699 (17)0.6456 (5)0.53335 (14)0.0456 (7)
H17A0.62020.76940.55880.055*
C180.91443 (17)0.4149 (5)0.79964 (14)0.0431 (6)
H18A0.88510.29650.80400.052*
C190.98817 (19)0.5051 (5)0.85127 (14)0.0465 (7)
H4B1.01670.46540.89370.056*
C200.94874 (16)0.6780 (5)0.75607 (14)0.0396 (6)
H20A0.94860.77720.72510.047*
O50.79582 (13)0.0829 (3)0.66003 (10)0.0453 (5)
H510.82860.03780.63930.068*
H520.79060.03100.68700.068*
H620.61860.23920.64010.068*
O60.58185 (13)0.1323 (4)0.62429 (13)0.0706 (7)
H610.60700.01950.64930.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02862 (18)0.03451 (19)0.02904 (18)0.00121 (11)0.01627 (13)0.00204 (11)
O10.0354 (9)0.0570 (11)0.0337 (10)0.0072 (8)0.0218 (8)0.0102 (8)
O20.0826 (15)0.0443 (11)0.0648 (14)0.0019 (11)0.0549 (13)0.0088 (10)
C10.0347 (12)0.0450 (15)0.0330 (13)0.0058 (12)0.0188 (11)0.0043 (11)
C20.0368 (12)0.0396 (13)0.0313 (12)0.0038 (11)0.0190 (11)0.0019 (10)
C30.0671 (19)0.0465 (16)0.0508 (18)0.0065 (14)0.0379 (16)0.0094 (13)
C40.089 (3)0.067 (2)0.0488 (19)0.0036 (19)0.0452 (19)0.0107 (16)
C50.097 (3)0.075 (2)0.052 (2)0.012 (2)0.056 (2)0.0123 (17)
C60.125 (3)0.058 (2)0.082 (3)0.009 (2)0.079 (3)0.006 (2)
C70.087 (2)0.0435 (15)0.0544 (18)0.0083 (16)0.0480 (18)0.0044 (14)
O30.0372 (9)0.0384 (9)0.0406 (10)0.0002 (8)0.0261 (8)0.0017 (8)
O40.0769 (14)0.0407 (11)0.0823 (16)0.0119 (10)0.0615 (14)0.0192 (11)
C80.0322 (12)0.0393 (13)0.0394 (14)0.0018 (11)0.0213 (11)0.0040 (11)
C90.0398 (13)0.0412 (14)0.0409 (14)0.0016 (11)0.0265 (12)0.0022 (11)
C100.0563 (16)0.0410 (14)0.0529 (17)0.0020 (14)0.0374 (14)0.0054 (13)
C110.084 (2)0.0556 (19)0.068 (2)0.0025 (18)0.055 (2)0.0101 (17)
C120.095 (3)0.075 (2)0.077 (3)0.009 (2)0.072 (2)0.004 (2)
C130.087 (3)0.066 (2)0.087 (3)0.0076 (19)0.070 (2)0.004 (2)
C140.070 (2)0.0461 (16)0.069 (2)0.0076 (14)0.0527 (18)0.0039 (14)
N10.0322 (11)0.0478 (13)0.0335 (11)0.0006 (9)0.0166 (9)0.0012 (10)
N20.0379 (12)0.0646 (16)0.0378 (13)0.0079 (12)0.0137 (10)0.0108 (12)
N30.0315 (10)0.0380 (11)0.0330 (11)0.0014 (9)0.0187 (9)0.0016 (9)
N40.0323 (10)0.0548 (14)0.0382 (12)0.0128 (10)0.0160 (10)0.0099 (11)
C150.0520 (16)0.0533 (17)0.0444 (16)0.0060 (14)0.0210 (14)0.0063 (14)
C160.0525 (17)0.075 (2)0.0369 (16)0.0024 (17)0.0143 (14)0.0081 (15)
C170.0404 (14)0.0504 (16)0.0416 (15)0.0042 (13)0.0192 (12)0.0025 (13)
C180.0429 (14)0.0490 (16)0.0355 (14)0.0060 (13)0.0198 (12)0.0066 (12)
C190.0418 (14)0.0629 (18)0.0302 (13)0.0002 (13)0.0163 (12)0.0032 (12)
C200.0354 (12)0.0432 (14)0.0404 (14)0.0075 (11)0.0207 (11)0.0017 (12)
O50.0619 (12)0.0313 (9)0.0619 (13)0.0006 (8)0.0460 (11)0.0003 (8)
O60.0401 (11)0.0495 (13)0.0839 (17)0.0027 (10)0.0083 (11)0.0156 (12)
Geometric parameters (Å, º) top
Cu—O31.9765 (18)C12—C131.369 (5)
Cu—O11.9814 (19)C12—H12A0.9300
Cu—N11.982 (2)C13—C141.383 (4)
Cu—N31.984 (2)C13—H13A0.9300
Cu—O52.297 (2)C14—H14A0.9300
O1—C11.286 (3)N1—C171.324 (4)
O2—C11.232 (3)N1—C151.370 (4)
C1—C21.497 (4)N2—C171.329 (4)
C2—C71.380 (4)N2—C161.353 (4)
C2—C31.383 (4)N2—H2A0.8600
C3—C41.382 (4)N3—C201.319 (3)
C3—H3A0.9300N3—C181.376 (3)
C4—C51.359 (5)N4—C201.336 (3)
C4—H4A0.9300N4—C191.361 (4)
C5—C61.363 (5)N4—H19A0.8600
C5—H5A0.9300C15—C161.351 (4)
C6—C71.383 (5)C15—H15A0.9300
C6—H6A0.9300C16—H16A0.9300
C7—H7A0.9300C17—H17A0.9300
O3—C81.270 (3)C18—C191.345 (4)
O4—C81.238 (3)C18—H18A0.9300
C8—C91.504 (4)C19—H4B0.8600
C9—C141.383 (4)C20—H20A0.9300
C9—C101.389 (4)O5—H510.9887
C10—C111.382 (4)O5—H520.9646
C10—H10A0.9300O6—H620.8577
C11—C121.383 (5)O6—H610.8477
C11—H11A0.9300
O3—Cu—O1176.36 (8)C12—C11—H11A120.0
O3—Cu—N192.13 (9)C13—C12—C11120.2 (3)
O1—Cu—N188.75 (9)C13—C12—H12A119.9
O3—Cu—N388.64 (9)C11—C12—H12A119.9
O1—Cu—N391.29 (9)C12—C13—C14120.0 (3)
N1—Cu—N3167.00 (9)C12—C13—H13A120.0
O3—Cu—O585.96 (7)C14—C13—H13A120.0
O1—Cu—O590.42 (7)C13—C14—C9120.4 (3)
N1—Cu—O598.31 (9)C13—C14—H14A119.8
N3—Cu—O594.69 (8)C9—C14—H14A119.8
C1—O1—Cu117.55 (17)C17—N1—C15105.2 (2)
O2—C1—O1124.2 (3)C17—N1—Cu126.2 (2)
O2—C1—C2119.4 (2)C15—N1—Cu127.76 (19)
O1—C1—C2116.4 (2)C17—N2—C16107.7 (2)
C7—C2—C3118.2 (3)C17—N2—H2A126.5
C7—C2—C1122.1 (2)C16—N2—H2A125.8
C3—C2—C1119.6 (2)C20—N3—C18105.4 (2)
C4—C3—C2120.6 (3)C20—N3—Cu129.63 (18)
C4—C3—H3A119.7C18—N3—Cu124.96 (18)
C2—C3—H3A119.7C20—N4—C19107.5 (2)
C5—C4—C3120.5 (3)C20—N4—H19A126.3
C5—C4—H4A119.8C19—N4—H19A126.3
C3—C4—H4A119.8C16—C15—N1109.4 (3)
C4—C5—C6119.7 (3)C16—C15—H15A125.3
C4—C5—H5A120.1N1—C15—H15A125.3
C6—C5—H5A120.1C15—C16—N2106.5 (3)
C5—C6—C7120.5 (3)C15—C16—H16A126.7
C5—C6—H6A119.8N2—C16—H16A126.7
C7—C6—H6A119.8N1—C17—N2111.2 (3)
C2—C7—C6120.5 (3)N1—C17—H17A124.4
C2—C7—H7A119.7N2—C17—H17A124.4
C6—C7—H7A119.7C19—C18—N3109.5 (3)
C8—O3—Cu120.30 (16)C19—C18—H18A125.2
O4—C8—O3123.6 (2)N3—C18—H18A125.2
O4—C8—C9119.8 (2)C18—C19—N4106.5 (2)
O3—C8—C9116.6 (2)C18—C19—H4B127.1
C14—C9—C10119.3 (3)N4—C19—H4B126.4
C14—C9—C8120.4 (2)N3—C20—N4111.2 (2)
C10—C9—C8120.3 (2)N3—C20—H20A124.4
C11—C10—C9120.0 (3)N4—C20—H20A124.4
C11—C10—H10A120.0Cu—O5—H51106.7
C9—C10—H10A120.0Cu—O5—H52136.7
C10—C11—C12120.0 (3)H51—O5—H52114.7
C10—C11—H11A120.0H62—O6—H61107.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.861.882.729 (4)172
N4—H19A···O1ii0.862.032.886 (3)177
O5—H51···O2iii0.991.962.730 (3)133
O5—H52···O4iii0.972.062.873 (4)141
O6—H61···O4iii0.851.942.729 (4)155
O6—H62···O30.861.992.827 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2O
Mr477.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.366 (4), 6.0076 (12), 23.123 (9)
β (°) 122.64 (2)
V3)2148.4 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.60 × 0.27 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.710, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
19722, 4867, 3715
Rint0.034
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.120, 1.15
No. of reflections4867
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.57

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO (Rigaku, 1998, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Cu—O31.9765 (18)Cu—N31.984 (2)
Cu—O11.9814 (19)Cu—O52.297 (2)
Cu—N11.982 (2)
O3—Cu—O1176.36 (8)N1—Cu—N3167.00 (9)
O3—Cu—N192.13 (9)O3—Cu—O585.96 (7)
O1—Cu—N188.75 (9)O1—Cu—O590.42 (7)
O3—Cu—N388.64 (9)N1—Cu—O598.31 (9)
O1—Cu—N391.29 (9)N3—Cu—O594.69 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.8601.8752.729 (4)172
N4—H19A···O1ii0.8602.0272.886 (3)177
O5—H51···O2iii0.9891.9562.730 (3)133
O5—H52···O4iii0.9652.0602.873 (4)141
O6—H61···O4iii0.8481.9372.729 (4)155
O6—H62···O30.8581.9892.827 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2; (iii) x, y1, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationEscriva, E., Sanais, M., Folgado, J. V. & Julia, G. L. (1996). Polyhedron, 15, 3271–3276.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMu, L., Yin, Y. X., Liu, X. H., Yun, S., Liu, X. L. & Miao, F. M. (2002). J. Tianjin Normal Univ. (Nat. Sci. Ed.), 22, 1–4.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L. & Chen, L. (2001). J. Xiangtan Normal Univ. 23, 34–37.  Google Scholar
First citationWang, Y. Y., Shi, Q., Shi, Q. Z., Gao, Y. C. & Zhou, Z. Y. (1999). Polyhedron, 18, 2009–2015.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m376-m377
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds