metal-organic compounds
Aquabis(benzoato-κO)bis(1H-imidazole-κN3)copper(II) monohydrate
aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Institute of Solid Materials Chemistry, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: zhengyueqing@nbu.edu.cn
In the title compound, [Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2O, the CuII atom is in a distorted square-pyramidal environment. The molecules are assembled into double chains extending along [010] by N—H⋯O hydrogen bonds. These double chains are linked by O—H⋯O hydrogen bonds, forming layers parallel to (02); the layers are linked into a three-dimensional network by van der Waals interactions.
Related literature
For general background, see: Escriva et al. (1996); Mu et al. (2002); Tian & Chen (2001). For related structures, see: Wang et al. (1999); Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809007600/ng2555sup1.cif
contains datablocks ptcla, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809007600/ng2555Isup2.hkl
After CuCl2.2H2O (0.1702 g, 1.001 mmol), benzoic acid (0.1221 g, 1.000 mmol) and imidazole (0.1354 g, 1.002 mmol) were completely dissolved in 20 ml mixed solvent of H2O and CH3CH2OH (Vw:Ve = 1:1). Then 1.2 ml (1.0 M) NaOH was dropwise added and the resulting dark blue suspension (pH = 8.0) was subsequently allowed to stir for 1 h. After the suspension was filtrated, the filtrate was allowed to stand at room temperature. The block-like crystals were obtained twenty days later. IR spectroscopic analysis (KBr, υ/cm-1): 3424(w), 1600(m), 1560(m), 1543(w), 1387(m), 1068(m), 717(m).
H atoms bonded to C atoms were palced in geometrically calculated positionand were refined using a riding model, with Uiso(H) = 1.5 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesisand were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 45% probability level. | |
Fig. 2. The double chains of the title complex pallel to [010]. |
[Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2O | F(000) = 988 |
Mr = 477.96 | Dx = 1.478 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 19722 reflections |
a = 18.366 (4) Å | θ = 3.0–27.4° |
b = 6.0076 (12) Å | µ = 1.06 mm−1 |
c = 23.123 (9) Å | T = 293 K |
β = 122.64 (2)° | Block, purple |
V = 2148.4 (12) Å3 | 0.60 × 0.27 × 0.26 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 4867 independent reflections |
Radiation source: fine-focus sealed tube | 3715 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 0 pixels mm-1 | θmax = 27.4°, θmin = 3.0° |
ω scans | h = −23→23 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −7→7 |
Tmin = 0.710, Tmax = 0.750 | l = −29→29 |
19722 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.849P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max = 0.002 |
4867 reflections | Δρmax = 0.66 e Å−3 |
281 parameters | Δρmin = −0.57 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0058 (7) |
[Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2O | V = 2148.4 (12) Å3 |
Mr = 477.96 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 18.366 (4) Å | µ = 1.06 mm−1 |
b = 6.0076 (12) Å | T = 293 K |
c = 23.123 (9) Å | 0.60 × 0.27 × 0.26 mm |
β = 122.64 (2)° |
Rigaku R-AXIS RAPID diffractometer | 4867 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3715 reflections with I > 2σ(I) |
Tmin = 0.710, Tmax = 0.750 | Rint = 0.034 |
19722 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.66 e Å−3 |
4867 reflections | Δρmin = −0.57 e Å−3 |
281 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.781397 (17) | 0.46304 (5) | 0.649481 (14) | 0.03036 (13) | |
O1 | 0.84502 (12) | 0.4688 (3) | 0.60237 (9) | 0.0404 (4) | |
O2 | 0.80700 (15) | 0.8199 (3) | 0.56883 (12) | 0.0562 (6) | |
C1 | 0.83217 (16) | 0.6360 (5) | 0.56317 (13) | 0.0373 (6) | |
C2 | 0.84906 (16) | 0.5985 (4) | 0.50741 (13) | 0.0356 (5) | |
C3 | 0.8361 (2) | 0.7703 (5) | 0.46303 (16) | 0.0517 (7) | |
H3A | 0.8166 | 0.9077 | 0.4679 | 0.062* | |
C4 | 0.8520 (2) | 0.7397 (6) | 0.41151 (17) | 0.0644 (9) | |
H4A | 0.8424 | 0.8560 | 0.3816 | 0.077* | |
C5 | 0.8814 (3) | 0.5408 (6) | 0.40419 (18) | 0.0669 (10) | |
H5A | 0.8936 | 0.5224 | 0.3703 | 0.080* | |
C6 | 0.8931 (3) | 0.3686 (6) | 0.4468 (2) | 0.0767 (11) | |
H6A | 0.9124 | 0.2318 | 0.4413 | 0.092* | |
C7 | 0.8765 (2) | 0.3957 (5) | 0.49800 (17) | 0.0567 (8) | |
H7A | 0.8840 | 0.2764 | 0.5263 | 0.068* | |
O3 | 0.71958 (11) | 0.4369 (3) | 0.69750 (9) | 0.0362 (4) | |
O4 | 0.69831 (15) | 0.8000 (3) | 0.69427 (12) | 0.0571 (6) | |
C8 | 0.69452 (15) | 0.6102 (4) | 0.71336 (13) | 0.0359 (5) | |
C9 | 0.65960 (17) | 0.5768 (4) | 0.75849 (14) | 0.0382 (6) | |
C10 | 0.67548 (19) | 0.3796 (5) | 0.79480 (15) | 0.0460 (7) | |
H10A | 0.7046 | 0.2638 | 0.7890 | 0.055* | |
C11 | 0.6480 (2) | 0.3556 (6) | 0.83958 (18) | 0.0622 (9) | |
H11A | 0.6608 | 0.2261 | 0.8654 | 0.075* | |
C12 | 0.6016 (3) | 0.5241 (6) | 0.8460 (2) | 0.0694 (10) | |
H12A | 0.5825 | 0.5069 | 0.8757 | 0.083* | |
C13 | 0.5835 (3) | 0.7162 (6) | 0.8088 (2) | 0.0687 (10) | |
H13A | 0.5511 | 0.8277 | 0.8125 | 0.082* | |
C14 | 0.6135 (2) | 0.7444 (5) | 0.76576 (18) | 0.0537 (8) | |
H14A | 0.6025 | 0.8768 | 0.7416 | 0.064* | |
N1 | 0.67162 (14) | 0.4759 (4) | 0.55835 (11) | 0.0384 (5) | |
N2 | 0.55699 (14) | 0.6160 (5) | 0.46720 (12) | 0.0502 (6) | |
H2A | 0.5156 | 0.7060 | 0.4411 | 0.060* | |
N3 | 0.88911 (13) | 0.5247 (3) | 0.73940 (11) | 0.0335 (5) | |
N4 | 1.00928 (13) | 0.6723 (4) | 0.82320 (12) | 0.0433 (5) | |
H19A | 1.0535 | 0.7585 | 0.8447 | 0.052* | |
C15 | 0.64338 (19) | 0.3320 (5) | 0.50435 (15) | 0.0524 (7) | |
H15A | 0.6690 | 0.1965 | 0.5061 | 0.063* | |
C16 | 0.5725 (2) | 0.4178 (6) | 0.44808 (16) | 0.0598 (9) | |
H16A | 0.5406 | 0.3532 | 0.4047 | 0.072* | |
C17 | 0.61699 (17) | 0.6456 (5) | 0.53335 (14) | 0.0456 (7) | |
H17A | 0.6202 | 0.7694 | 0.5588 | 0.055* | |
C18 | 0.91443 (17) | 0.4149 (5) | 0.79964 (14) | 0.0431 (6) | |
H18A | 0.8851 | 0.2965 | 0.8040 | 0.052* | |
C19 | 0.98817 (19) | 0.5051 (5) | 0.85127 (14) | 0.0465 (7) | |
H4B | 1.0167 | 0.4654 | 0.8937 | 0.056* | |
C20 | 0.94874 (16) | 0.6780 (5) | 0.75607 (14) | 0.0396 (6) | |
H20A | 0.9486 | 0.7772 | 0.7251 | 0.047* | |
O5 | 0.79582 (13) | 0.0829 (3) | 0.66003 (10) | 0.0453 (5) | |
H51 | 0.8286 | 0.0378 | 0.6393 | 0.068* | |
H52 | 0.7906 | −0.0310 | 0.6870 | 0.068* | |
H62 | 0.6186 | 0.2392 | 0.6401 | 0.068* | |
O6 | 0.58185 (13) | 0.1323 (4) | 0.62429 (13) | 0.0706 (7) | |
H61 | 0.6070 | 0.0195 | 0.6493 | 0.106* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.02862 (18) | 0.03451 (19) | 0.02904 (18) | 0.00121 (11) | 0.01627 (13) | 0.00204 (11) |
O1 | 0.0354 (9) | 0.0570 (11) | 0.0337 (10) | 0.0072 (8) | 0.0218 (8) | 0.0102 (8) |
O2 | 0.0826 (15) | 0.0443 (11) | 0.0648 (14) | −0.0019 (11) | 0.0549 (13) | −0.0088 (10) |
C1 | 0.0347 (12) | 0.0450 (15) | 0.0330 (13) | −0.0058 (12) | 0.0188 (11) | −0.0043 (11) |
C2 | 0.0368 (12) | 0.0396 (13) | 0.0313 (12) | −0.0038 (11) | 0.0190 (11) | −0.0019 (10) |
C3 | 0.0671 (19) | 0.0465 (16) | 0.0508 (18) | 0.0065 (14) | 0.0379 (16) | 0.0094 (13) |
C4 | 0.089 (3) | 0.067 (2) | 0.0488 (19) | −0.0036 (19) | 0.0452 (19) | 0.0107 (16) |
C5 | 0.097 (3) | 0.075 (2) | 0.052 (2) | −0.012 (2) | 0.056 (2) | −0.0123 (17) |
C6 | 0.125 (3) | 0.058 (2) | 0.082 (3) | 0.009 (2) | 0.079 (3) | −0.006 (2) |
C7 | 0.087 (2) | 0.0435 (15) | 0.0544 (18) | 0.0083 (16) | 0.0480 (18) | 0.0044 (14) |
O3 | 0.0372 (9) | 0.0384 (9) | 0.0406 (10) | −0.0002 (8) | 0.0261 (8) | −0.0017 (8) |
O4 | 0.0769 (14) | 0.0407 (11) | 0.0823 (16) | 0.0119 (10) | 0.0615 (14) | 0.0192 (11) |
C8 | 0.0322 (12) | 0.0393 (13) | 0.0394 (14) | 0.0018 (11) | 0.0213 (11) | 0.0040 (11) |
C9 | 0.0398 (13) | 0.0412 (14) | 0.0409 (14) | −0.0016 (11) | 0.0265 (12) | −0.0022 (11) |
C10 | 0.0563 (16) | 0.0410 (14) | 0.0529 (17) | 0.0020 (14) | 0.0374 (14) | 0.0054 (13) |
C11 | 0.084 (2) | 0.0556 (19) | 0.068 (2) | −0.0025 (18) | 0.055 (2) | 0.0101 (17) |
C12 | 0.095 (3) | 0.075 (2) | 0.077 (3) | −0.009 (2) | 0.072 (2) | −0.004 (2) |
C13 | 0.087 (3) | 0.066 (2) | 0.087 (3) | 0.0076 (19) | 0.070 (2) | −0.004 (2) |
C14 | 0.070 (2) | 0.0461 (16) | 0.069 (2) | 0.0076 (14) | 0.0527 (18) | 0.0039 (14) |
N1 | 0.0322 (11) | 0.0478 (13) | 0.0335 (11) | 0.0006 (9) | 0.0166 (9) | 0.0012 (10) |
N2 | 0.0379 (12) | 0.0646 (16) | 0.0378 (13) | 0.0079 (12) | 0.0137 (10) | 0.0108 (12) |
N3 | 0.0315 (10) | 0.0380 (11) | 0.0330 (11) | 0.0014 (9) | 0.0187 (9) | 0.0016 (9) |
N4 | 0.0323 (10) | 0.0548 (14) | 0.0382 (12) | −0.0128 (10) | 0.0160 (10) | −0.0099 (11) |
C15 | 0.0520 (16) | 0.0533 (17) | 0.0444 (16) | 0.0060 (14) | 0.0210 (14) | −0.0063 (14) |
C16 | 0.0525 (17) | 0.075 (2) | 0.0369 (16) | 0.0024 (17) | 0.0143 (14) | −0.0081 (15) |
C17 | 0.0404 (14) | 0.0504 (16) | 0.0416 (15) | 0.0042 (13) | 0.0192 (12) | 0.0025 (13) |
C18 | 0.0429 (14) | 0.0490 (16) | 0.0355 (14) | −0.0060 (13) | 0.0198 (12) | 0.0066 (12) |
C19 | 0.0418 (14) | 0.0629 (18) | 0.0302 (13) | 0.0002 (13) | 0.0163 (12) | 0.0032 (12) |
C20 | 0.0354 (12) | 0.0432 (14) | 0.0404 (14) | −0.0075 (11) | 0.0207 (11) | 0.0017 (12) |
O5 | 0.0619 (12) | 0.0313 (9) | 0.0619 (13) | 0.0006 (8) | 0.0460 (11) | −0.0003 (8) |
O6 | 0.0401 (11) | 0.0495 (13) | 0.0839 (17) | −0.0027 (10) | 0.0083 (11) | 0.0156 (12) |
Cu—O3 | 1.9765 (18) | C12—C13 | 1.369 (5) |
Cu—O1 | 1.9814 (19) | C12—H12A | 0.9300 |
Cu—N1 | 1.982 (2) | C13—C14 | 1.383 (4) |
Cu—N3 | 1.984 (2) | C13—H13A | 0.9300 |
Cu—O5 | 2.297 (2) | C14—H14A | 0.9300 |
O1—C1 | 1.286 (3) | N1—C17 | 1.324 (4) |
O2—C1 | 1.232 (3) | N1—C15 | 1.370 (4) |
C1—C2 | 1.497 (4) | N2—C17 | 1.329 (4) |
C2—C7 | 1.380 (4) | N2—C16 | 1.353 (4) |
C2—C3 | 1.383 (4) | N2—H2A | 0.8600 |
C3—C4 | 1.382 (4) | N3—C20 | 1.319 (3) |
C3—H3A | 0.9300 | N3—C18 | 1.376 (3) |
C4—C5 | 1.359 (5) | N4—C20 | 1.336 (3) |
C4—H4A | 0.9300 | N4—C19 | 1.361 (4) |
C5—C6 | 1.363 (5) | N4—H19A | 0.8600 |
C5—H5A | 0.9300 | C15—C16 | 1.351 (4) |
C6—C7 | 1.383 (5) | C15—H15A | 0.9300 |
C6—H6A | 0.9300 | C16—H16A | 0.9300 |
C7—H7A | 0.9300 | C17—H17A | 0.9300 |
O3—C8 | 1.270 (3) | C18—C19 | 1.345 (4) |
O4—C8 | 1.238 (3) | C18—H18A | 0.9300 |
C8—C9 | 1.504 (4) | C19—H4B | 0.8600 |
C9—C14 | 1.383 (4) | C20—H20A | 0.9300 |
C9—C10 | 1.389 (4) | O5—H51 | 0.9887 |
C10—C11 | 1.382 (4) | O5—H52 | 0.9646 |
C10—H10A | 0.9300 | O6—H62 | 0.8577 |
C11—C12 | 1.383 (5) | O6—H61 | 0.8477 |
C11—H11A | 0.9300 | ||
O3—Cu—O1 | 176.36 (8) | C12—C11—H11A | 120.0 |
O3—Cu—N1 | 92.13 (9) | C13—C12—C11 | 120.2 (3) |
O1—Cu—N1 | 88.75 (9) | C13—C12—H12A | 119.9 |
O3—Cu—N3 | 88.64 (9) | C11—C12—H12A | 119.9 |
O1—Cu—N3 | 91.29 (9) | C12—C13—C14 | 120.0 (3) |
N1—Cu—N3 | 167.00 (9) | C12—C13—H13A | 120.0 |
O3—Cu—O5 | 85.96 (7) | C14—C13—H13A | 120.0 |
O1—Cu—O5 | 90.42 (7) | C13—C14—C9 | 120.4 (3) |
N1—Cu—O5 | 98.31 (9) | C13—C14—H14A | 119.8 |
N3—Cu—O5 | 94.69 (8) | C9—C14—H14A | 119.8 |
C1—O1—Cu | 117.55 (17) | C17—N1—C15 | 105.2 (2) |
O2—C1—O1 | 124.2 (3) | C17—N1—Cu | 126.2 (2) |
O2—C1—C2 | 119.4 (2) | C15—N1—Cu | 127.76 (19) |
O1—C1—C2 | 116.4 (2) | C17—N2—C16 | 107.7 (2) |
C7—C2—C3 | 118.2 (3) | C17—N2—H2A | 126.5 |
C7—C2—C1 | 122.1 (2) | C16—N2—H2A | 125.8 |
C3—C2—C1 | 119.6 (2) | C20—N3—C18 | 105.4 (2) |
C4—C3—C2 | 120.6 (3) | C20—N3—Cu | 129.63 (18) |
C4—C3—H3A | 119.7 | C18—N3—Cu | 124.96 (18) |
C2—C3—H3A | 119.7 | C20—N4—C19 | 107.5 (2) |
C5—C4—C3 | 120.5 (3) | C20—N4—H19A | 126.3 |
C5—C4—H4A | 119.8 | C19—N4—H19A | 126.3 |
C3—C4—H4A | 119.8 | C16—C15—N1 | 109.4 (3) |
C4—C5—C6 | 119.7 (3) | C16—C15—H15A | 125.3 |
C4—C5—H5A | 120.1 | N1—C15—H15A | 125.3 |
C6—C5—H5A | 120.1 | C15—C16—N2 | 106.5 (3) |
C5—C6—C7 | 120.5 (3) | C15—C16—H16A | 126.7 |
C5—C6—H6A | 119.8 | N2—C16—H16A | 126.7 |
C7—C6—H6A | 119.8 | N1—C17—N2 | 111.2 (3) |
C2—C7—C6 | 120.5 (3) | N1—C17—H17A | 124.4 |
C2—C7—H7A | 119.7 | N2—C17—H17A | 124.4 |
C6—C7—H7A | 119.7 | C19—C18—N3 | 109.5 (3) |
C8—O3—Cu | 120.30 (16) | C19—C18—H18A | 125.2 |
O4—C8—O3 | 123.6 (2) | N3—C18—H18A | 125.2 |
O4—C8—C9 | 119.8 (2) | C18—C19—N4 | 106.5 (2) |
O3—C8—C9 | 116.6 (2) | C18—C19—H4B | 127.1 |
C14—C9—C10 | 119.3 (3) | N4—C19—H4B | 126.4 |
C14—C9—C8 | 120.4 (2) | N3—C20—N4 | 111.2 (2) |
C10—C9—C8 | 120.3 (2) | N3—C20—H20A | 124.4 |
C11—C10—C9 | 120.0 (3) | N4—C20—H20A | 124.4 |
C11—C10—H10A | 120.0 | Cu—O5—H51 | 106.7 |
C9—C10—H10A | 120.0 | Cu—O5—H52 | 136.7 |
C10—C11—C12 | 120.0 (3) | H51—O5—H52 | 114.7 |
C10—C11—H11A | 120.0 | H62—O6—H61 | 107.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O6i | 0.86 | 1.88 | 2.729 (4) | 172 |
N4—H19A···O1ii | 0.86 | 2.03 | 2.886 (3) | 177 |
O5—H51···O2iii | 0.99 | 1.96 | 2.730 (3) | 133 |
O5—H52···O4iii | 0.97 | 2.06 | 2.873 (4) | 141 |
O6—H61···O4iii | 0.85 | 1.94 | 2.729 (4) | 155 |
O6—H62···O3 | 0.86 | 1.99 | 2.827 (3) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H5O2)2(C3H4N2)2(H2O)]·H2O |
Mr | 477.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 18.366 (4), 6.0076 (12), 23.123 (9) |
β (°) | 122.64 (2) |
V (Å3) | 2148.4 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.60 × 0.27 × 0.26 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.710, 0.750 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19722, 4867, 3715 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.120, 1.15 |
No. of reflections | 4867 |
No. of parameters | 281 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.57 |
Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO (Rigaku, 1998, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
Cu—O3 | 1.9765 (18) | Cu—N3 | 1.984 (2) |
Cu—O1 | 1.9814 (19) | Cu—O5 | 2.297 (2) |
Cu—N1 | 1.982 (2) | ||
O3—Cu—O1 | 176.36 (8) | N1—Cu—N3 | 167.00 (9) |
O3—Cu—N1 | 92.13 (9) | O3—Cu—O5 | 85.96 (7) |
O1—Cu—N1 | 88.75 (9) | O1—Cu—O5 | 90.42 (7) |
O3—Cu—N3 | 88.64 (9) | N1—Cu—O5 | 98.31 (9) |
O1—Cu—N3 | 91.29 (9) | N3—Cu—O5 | 94.69 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O6i | 0.860 | 1.875 | 2.729 (4) | 172 |
N4—H19A···O1ii | 0.860 | 2.027 | 2.886 (3) | 177 |
O5—H51···O2iii | 0.989 | 1.956 | 2.730 (3) | 133 |
O5—H52···O4iii | 0.965 | 2.060 | 2.873 (4) | 141 |
O6—H61···O4iii | 0.848 | 1.937 | 2.729 (4) | 155 |
O6—H62···O3 | 0.858 | 1.989 | 2.827 (3) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) x, y−1, z. |
Acknowledgements
This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Escriva, E., Sanais, M., Folgado, J. V. & Julia, G. L. (1996). Polyhedron, 15, 3271–3276. CSD CrossRef CAS Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Mu, L., Yin, Y. X., Liu, X. H., Yun, S., Liu, X. L. & Miao, F. M. (2002). J. Tianjin Normal Univ. (Nat. Sci. Ed.), 22, 1–4. Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, L. & Chen, L. (2001). J. Xiangtan Normal Univ. 23, 34–37. Google Scholar
Wang, Y. Y., Shi, Q., Shi, Q. Z., Gao, Y. C. & Zhou, Z. Y. (1999). Polyhedron, 18, 2009–2015. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The copper(II) complexes with carboxylic acid exist extensively and play an important role in a vast range of chemistry and organisums (Escriva, et al., 1996; Tian & Chen, 2001). At the same time, some copper(II) complexes with imidazole ligand show special properties, such as optical properties, magnetic properties and activity of superoxide dismutase, Which have potential applications in material and medicine industry(Mu, et al., 2002). However, investigation of combination copper(II), carboxylic acid and imidazole to design monomeric copper(II) complexes is quite limited. Herein, we report the synthesis, crystal structure of a novel complex [Cu(H2O)(C3H4N2)2 (C6H5COO)2].H2O.
The asymmetric unit of the title compound consists of one Cu(II) ion, two imidazole molecules, two benzoate anions, one aqua ligand and one lattice H2O molecule, As illustrated in Fig. 1. The copper atom is involved in a CuN2O3 chromophore and lies in a distorted square-pyramidal environment. The equatorial positions are occupied by two oxygen atoms from two different benzoate anions and two nitrogen atoms from two different imidazole molecules. The two nitrogen atoms from imidazole ligands and two carboxylate oxygen atoms are in a trans position, as observed in other compounds of copper(II) (Wang, et al., 1999), and the axial position is occupied by O5 atoms. The bond lengths of Cu—N1 and Cu—N3 fall in the range of 1.982 (2) and 1.984 (2) Å, and the Cu—O1 and Cu—O3 bond distances are equal to 1.977 (2) and 1.982 (2) Å, the axial Cu—O5 bond distance is 2.297 (2) Å. The τ index about the central Cu atom is 0.156 Å, suggesting that the square pyramidal coordination geometry is slightly distorted (Addison et al., 1984). The bond length of Cu—O2 and Cu—O4 are 3.034 (3) and 3.040 (3) Å, which is longer than normal bond length of Cu—O, indicating there is no interaction between Cu—O2 and Cu—O4. There are two different benzoate anions in the compound. The plane of benzene ring and carboxylate exhibit nearly perfect coplanarity in the benzoate anion containing C1, but for another benzoate anion, the dihedral angle between benzene ring and carboxylate plane is 16.6 (6)°. The two imidazole ligands are not distortion in the compound and the dihedral angle between two imidazole rings is 67.5 (1)°C. The complex molecules are assembled into one dimension chains extending along the [010] direction through hydrogen bonds between aqua ligand and uncoordinated carboxylate oxygen atoms (O5—H51···O2, O5—H52···O4). Then the one dimension chains generate double chains through hydrogen bonds by nitrogen atom of imidazole provide H19A to carboxylate oxygen atom (O1), the double chains are assembled further into two-dimensional layer parallel to (-1 0 2) by hydrogen bonded of N2—H2A···O6 and O6—H62···O3, the two dimension layers array alternately to generate three dimension network by Van der Waals interactions.