organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benz­yl­oxy-3-(2,4-di­chloro­phen­yl)-1-oxa­spiro­[4.5]dec-3-en-2-one

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 5 March 2009; accepted 7 March 2009; online 25 March 2009)

In the title compound, C22H20Cl2O3, the cyclo­hexyl ring adopts a chair conformation. The furanyl ring plane makes dihedral angles of 70.10 (2) and 86.12 (3)° with the 2,4-dichloro­phenyl ring and aromatic ring of the benzyl group, respectively. The crystal structure features weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds.

Related literature

For similar compounds, see: Bretschneider et al. (2003[Bretschneider, T., Benet-Buchholz, J., Fischer, R. & Nauen, R. (2003). Chimia, 57, 697-701.]). For the synthesis, see: Yu et al. (1994[Yu, M. X. (1994). Pestic. Sci. 33, 14-15. ]); Song et al. (2008[Song, R. F. (2008). Fine Chem. 25, 708-709.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20Cl2O3

  • Mr = 403.28

  • Triclinic, [P \overline 1]

  • a = 7.2624 (15) Å

  • b = 12.117 (2) Å

  • c = 12.679 (3) Å

  • α = 63.30 (2)°

  • β = 87.67 (3)°

  • γ = 73.32 (1)°

  • V = 949.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 113 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.938, Tmax = 0.965

  • 7095 measured reflections

  • 3328 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.03

  • 3328 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.97 2.54 3.477 (2) 162
C2—H2B⋯Cl1ii 0.97 2.69 3.5051 (19) 142
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was prepared as part of a project in search for new compounds with biological activity (Bretschneider et al., 2003). We report here the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Bretschneider et al., 2003). The cyclohexane ring (C1—C6) adopts a chair conformation. The furan ring (O1/C1/C7/C8/C9) plane forms dihedral angles of 71.10 (2)° and 86.12 (3)° with the benzene ring (C10—C15) and the benzyl plane (C16—C22) respectively. In addition to van der Waals forces, the structure is stabilized by weak C—H···O and C—H···Cl hydrogen bonds.

Related literature top

For similar compounds, see: Bretschneider et al. (2003). For the synthesis, see: Yu et al. (1994); Song et al. (2008). [Please revise scheme to show ring carbonyl group]

Experimental top

3-(2,4-Dichlorophenyl)-2,4-dioxo-1-oxaspiro[4.5]decane 3.13 g (10.0 mmol), was suspended in a solution of sodium carbonate 0.54 g (5.1 mmol) in 20 ml of water in a flask equipped with stirrer, water separator and reflux condenser. Toluene (40 ml) was added after 0.5 h, the mixture was heated to dehydration to distil the toluene solvent. Then 1-(chloromethyl)benzene 1.39 g (11.0 mmol) and N,N-dimethylformamide(DMF) solvent (20 ml) were added while maintaining the temperature at 373 K for 4 h. Upon cooling at room temperature water (20 ml) was added. The mixture was extracted with CH2Cl2 (15 ml) and the organic layer was washed with water and dried over sodium sulfate. The excess CH2Cl2 was removedon a water vacuum pump to obtain the oily product. Crystallized from methanol to afford the title compound 2.95 g (80% yield) (Yu et al., 1994; Song et al., 2008). Single crystals suitable for X-ray diffraction were obtained by recrystallization from the mixture of acetone and methanol at room temperature.

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
4-Benzyloxy-3-(2,4-dichlorophenyl)-1-oxaspiro[4.5]dec-3-en-2-one top
Crystal data top
C22H20Cl2O3Z = 2
Mr = 403.28F(000) = 420
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2624 (15) ÅCell parameters from 2983 reflections
b = 12.117 (2) Åθ = 2.0–27.9°
c = 12.679 (3) ŵ = 0.36 mm1
α = 63.30 (2)°T = 113 K
β = 87.67 (3)°Block, colorless
γ = 73.32 (1)°0.18 × 0.16 × 0.10 mm
V = 949.8 (3) Å3
Data collection top
Rigaku Saturn
diffractometer
3328 independent reflections
Radiation source: rotating anode2376 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.039
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 88
Tmin = 0.938, Tmax = 0.965k = 1410
7095 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
3328 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H20Cl2O3γ = 73.32 (1)°
Mr = 403.28V = 949.8 (3) Å3
Triclinic, P1Z = 2
a = 7.2624 (15) ÅMo Kα radiation
b = 12.117 (2) ŵ = 0.36 mm1
c = 12.679 (3) ÅT = 113 K
α = 63.30 (2)°0.18 × 0.16 × 0.10 mm
β = 87.67 (3)°
Data collection top
Rigaku Saturn
diffractometer
3328 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2376 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.965Rint = 0.039
7095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3328 reflectionsΔρmin = 0.22 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74501 (6)0.33929 (4)1.10256 (4)0.02229 (14)
Cl21.16128 (7)0.12117 (5)1.44683 (4)0.02817 (15)
O10.65050 (16)0.34607 (11)0.77085 (11)0.0161 (3)
O20.93505 (17)0.29879 (11)0.86875 (11)0.0195 (3)
O30.37612 (16)0.16179 (11)0.97360 (11)0.0159 (3)
C10.4713 (2)0.31322 (16)0.79970 (16)0.0139 (4)
C20.3139 (3)0.43289 (16)0.79041 (17)0.0181 (4)
H2A0.19820.40930.81940.022*
H2B0.35660.46440.84020.022*
C30.2661 (3)0.54029 (17)0.66320 (18)0.0236 (5)
H3A0.37810.56990.63650.028*
H3B0.16160.61300.66000.028*
C40.2071 (3)0.49221 (18)0.58136 (19)0.0313 (5)
H4A0.08850.46980.60380.038*
H4B0.18270.56080.50030.038*
C50.3647 (3)0.37423 (18)0.58838 (17)0.0295 (5)
H5A0.47810.39950.55680.035*
H5B0.32010.34230.53960.035*
C60.4199 (3)0.26580 (16)0.71537 (16)0.0199 (4)
H6A0.31280.23070.74240.024*
H6B0.52960.19670.71680.024*
C70.5194 (2)0.21147 (15)0.92748 (16)0.0131 (4)
C80.6971 (2)0.19522 (15)0.96996 (16)0.0135 (4)
C90.7788 (3)0.28199 (16)0.87102 (17)0.0156 (4)
C100.8070 (2)0.11567 (16)1.08853 (16)0.0129 (4)
C110.8439 (2)0.17346 (16)1.15576 (16)0.0149 (4)
C120.9524 (2)0.10299 (16)1.26515 (16)0.0172 (4)
H120.97730.14391.30750.021*
C131.0228 (2)0.02970 (17)1.30966 (16)0.0174 (4)
C140.9885 (2)0.09177 (16)1.24730 (17)0.0176 (4)
H141.03610.18141.27900.021*
C150.8826 (2)0.01880 (16)1.13717 (16)0.0160 (4)
H150.86120.06031.09450.019*
C160.3825 (3)0.08932 (16)1.10127 (16)0.0162 (4)
H16A0.50500.02131.13120.019*
H16B0.28070.04831.11940.019*
C170.3590 (2)0.17132 (17)1.16439 (17)0.0168 (4)
C180.2414 (3)0.29913 (17)1.11236 (18)0.0202 (4)
H180.18030.33611.03610.024*
C190.2147 (3)0.37185 (19)1.17361 (19)0.0278 (5)
H190.13800.45791.13780.033*
C200.3018 (3)0.3168 (2)1.2875 (2)0.0347 (6)
H200.28260.36531.32890.042*
C210.4176 (3)0.1892 (2)1.3404 (2)0.0344 (6)
H210.47590.15201.41750.041*
C220.4468 (3)0.11721 (19)1.27877 (18)0.0248 (5)
H220.52600.03181.31430.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0253 (3)0.0150 (2)0.0274 (3)0.00301 (19)0.0009 (2)0.0119 (2)
Cl20.0312 (3)0.0302 (3)0.0146 (3)0.0031 (2)0.0051 (2)0.0062 (2)
O10.0157 (7)0.0161 (6)0.0147 (7)0.0071 (5)0.0021 (5)0.0042 (6)
O20.0140 (7)0.0208 (7)0.0240 (8)0.0086 (6)0.0042 (6)0.0087 (6)
O30.0160 (7)0.0181 (6)0.0130 (8)0.0081 (5)0.0023 (6)0.0049 (6)
C10.0143 (9)0.0136 (9)0.0138 (10)0.0076 (7)0.0019 (8)0.0042 (8)
C20.0171 (10)0.0167 (9)0.0189 (11)0.0040 (8)0.0009 (8)0.0075 (8)
C30.0210 (11)0.0182 (10)0.0227 (12)0.0021 (8)0.0022 (9)0.0039 (9)
C40.0354 (13)0.0295 (12)0.0186 (12)0.0115 (10)0.0100 (10)0.0001 (10)
C50.0476 (14)0.0311 (11)0.0138 (12)0.0214 (10)0.0007 (10)0.0077 (9)
C60.0280 (11)0.0184 (10)0.0169 (11)0.0105 (8)0.0028 (9)0.0090 (9)
C70.0147 (9)0.0117 (9)0.0163 (11)0.0054 (7)0.0050 (8)0.0087 (8)
C80.0141 (9)0.0114 (9)0.0160 (11)0.0030 (7)0.0024 (8)0.0078 (8)
C90.0159 (10)0.0128 (9)0.0179 (11)0.0018 (8)0.0011 (8)0.0082 (8)
C100.0080 (9)0.0159 (9)0.0154 (11)0.0037 (7)0.0028 (7)0.0076 (8)
C110.0127 (9)0.0136 (9)0.0177 (11)0.0039 (7)0.0027 (8)0.0068 (8)
C120.0178 (10)0.0214 (10)0.0162 (11)0.0090 (8)0.0040 (8)0.0102 (9)
C130.0136 (9)0.0225 (10)0.0126 (11)0.0043 (8)0.0012 (8)0.0058 (8)
C140.0183 (10)0.0147 (9)0.0168 (11)0.0041 (8)0.0034 (8)0.0053 (8)
C150.0144 (10)0.0182 (9)0.0187 (11)0.0074 (8)0.0047 (8)0.0101 (8)
C160.0166 (10)0.0157 (9)0.0140 (11)0.0091 (8)0.0046 (8)0.0025 (8)
C170.0132 (9)0.0230 (10)0.0162 (11)0.0114 (8)0.0073 (8)0.0075 (8)
C180.0197 (10)0.0246 (10)0.0174 (11)0.0094 (8)0.0071 (8)0.0093 (9)
C190.0269 (11)0.0285 (11)0.0358 (14)0.0124 (9)0.0150 (10)0.0199 (10)
C200.0326 (13)0.0555 (15)0.0384 (15)0.0225 (11)0.0141 (11)0.0358 (13)
C210.0277 (12)0.0596 (15)0.0243 (13)0.0180 (11)0.0051 (10)0.0236 (12)
C220.0195 (11)0.0326 (11)0.0194 (12)0.0082 (9)0.0024 (9)0.0091 (10)
Geometric parameters (Å, º) top
Cl1—C111.7325 (18)C8—C91.464 (3)
Cl2—C131.7420 (19)C8—C101.477 (2)
O1—C91.371 (2)C10—C151.396 (2)
O1—C11.454 (2)C10—C111.397 (2)
O2—C91.206 (2)C11—C121.383 (2)
O3—C71.335 (2)C12—C131.379 (2)
O3—C161.449 (2)C12—H120.9300
C1—C71.507 (3)C13—C141.382 (2)
C1—C61.523 (2)C14—C151.382 (2)
C1—C21.526 (2)C14—H140.9300
C2—C31.522 (3)C15—H150.9300
C2—H2A0.9700C16—C171.504 (2)
C2—H2B0.9700C16—H16A0.9700
C3—C41.524 (3)C16—H16B0.9700
C3—H3A0.9700C17—C221.386 (3)
C3—H3B0.9700C17—C181.390 (2)
C4—C51.522 (3)C18—C191.386 (3)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.377 (3)
C5—C61.526 (3)C19—H190.9300
C5—H5A0.9700C20—C211.384 (3)
C5—H5B0.9700C20—H200.9300
C6—H6A0.9700C21—C221.382 (3)
C6—H6B0.9700C21—H210.9300
C7—C81.345 (2)C22—H220.9300
C9—O1—C1109.44 (14)O2—C9—C8129.10 (17)
C7—O3—C16119.28 (14)O1—C9—C8110.02 (15)
O1—C1—C7102.54 (14)C15—C10—C11117.08 (16)
O1—C1—C6109.19 (15)C15—C10—C8122.16 (15)
C7—C1—C6114.33 (14)C11—C10—C8120.74 (14)
O1—C1—C2108.53 (13)C12—C11—C10122.57 (15)
C7—C1—C2109.95 (15)C12—C11—Cl1118.35 (13)
C6—C1—C2111.78 (14)C10—C11—Cl1119.05 (13)
C3—C2—C1111.71 (16)C13—C12—C11118.09 (16)
C3—C2—H2A109.3C13—C12—H12121.0
C1—C2—H2A109.3C11—C12—H12121.0
C3—C2—H2B109.3C12—C13—C14121.61 (16)
C1—C2—H2B109.3C12—C13—Cl2119.22 (14)
H2A—C2—H2B107.9C14—C13—Cl2119.17 (14)
C2—C3—C4110.71 (16)C13—C14—C15119.12 (16)
C2—C3—H3A109.5C13—C14—H14120.4
C4—C3—H3A109.5C15—C14—H14120.4
C2—C3—H3B109.5C14—C15—C10121.52 (16)
C4—C3—H3B109.5C14—C15—H15119.2
H3A—C3—H3B108.1C10—C15—H15119.2
C5—C4—C3110.90 (16)O3—C16—C17113.48 (14)
C5—C4—H4A109.5O3—C16—H16A108.9
C3—C4—H4A109.5C17—C16—H16A108.9
C5—C4—H4B109.5O3—C16—H16B108.9
C3—C4—H4B109.5C17—C16—H16B108.9
H4A—C4—H4B108.0H16A—C16—H16B107.7
C4—C5—C6112.11 (18)C22—C17—C18119.09 (17)
C4—C5—H5A109.2C22—C17—C16119.83 (16)
C6—C5—H5A109.2C18—C17—C16120.98 (16)
C4—C5—H5B109.2C19—C18—C17120.35 (19)
C6—C5—H5B109.2C19—C18—H18119.8
H5A—C5—H5B107.9C17—C18—H18119.8
C1—C6—C5111.93 (15)C20—C19—C18120.03 (18)
C1—C6—H6A109.2C20—C19—H19120.0
C5—C6—H6A109.2C18—C19—H19120.0
C1—C6—H6B109.2C19—C20—C21120.01 (19)
C5—C6—H6B109.2C19—C20—H20120.0
H6A—C6—H6B107.9C21—C20—H20120.0
O3—C7—C8134.71 (17)C22—C21—C20120.0 (2)
O3—C7—C1113.78 (15)C22—C21—H21120.0
C8—C7—C1111.46 (17)C20—C21—H21120.0
C7—C8—C9106.26 (16)C21—C22—C17120.49 (18)
C7—C8—C10133.14 (17)C21—C22—H22119.8
C9—C8—C10120.56 (15)C17—C22—H22119.8
O2—C9—O1120.86 (17)
C9—O1—C1—C75.26 (15)C10—C8—C9—O1179.53 (13)
C9—O1—C1—C6126.89 (14)C7—C8—C10—C1571.9 (2)
C9—O1—C1—C2111.04 (15)C9—C8—C10—C15110.56 (19)
O1—C1—C2—C366.38 (18)C7—C8—C10—C11109.8 (2)
C7—C1—C2—C3177.80 (15)C9—C8—C10—C1167.8 (2)
C6—C1—C2—C354.1 (2)C15—C10—C11—C120.9 (3)
C1—C2—C3—C456.4 (2)C8—C10—C11—C12177.49 (16)
C2—C3—C4—C556.7 (2)C15—C10—C11—Cl1177.30 (14)
C3—C4—C5—C655.2 (2)C8—C10—C11—Cl14.3 (2)
O1—C1—C6—C568.13 (19)C10—C11—C12—C131.4 (3)
C7—C1—C6—C5177.68 (15)Cl1—C11—C12—C13176.86 (14)
C2—C1—C6—C552.0 (2)C11—C12—C13—C140.6 (3)
C4—C5—C6—C152.9 (2)C11—C12—C13—Cl2179.62 (13)
C16—O3—C7—C813.0 (3)C12—C13—C14—C150.6 (3)
C16—O3—C7—C1164.16 (13)Cl2—C13—C14—C15178.43 (14)
O1—C1—C7—O3177.66 (12)C13—C14—C15—C101.0 (3)
C6—C1—C7—O359.62 (19)C11—C10—C15—C140.3 (3)
C2—C1—C7—O367.05 (18)C8—C10—C15—C14178.71 (16)
O1—C1—C7—C84.54 (17)C7—O3—C16—C1767.88 (19)
C6—C1—C7—C8122.59 (17)O3—C16—C17—C22149.82 (16)
C2—C1—C7—C8110.74 (16)O3—C16—C17—C1833.8 (2)
O3—C7—C8—C9179.26 (16)C22—C17—C18—C190.9 (3)
C1—C7—C8—C92.11 (18)C16—C17—C18—C19177.25 (18)
O3—C7—C8—C101.4 (3)C17—C18—C19—C201.3 (3)
C1—C7—C8—C10175.71 (16)C18—C19—C20—C210.7 (3)
C1—O1—C9—O2177.12 (14)C19—C20—C21—C220.3 (3)
C1—O1—C9—C84.38 (16)C20—C21—C22—C170.7 (3)
C7—C8—C9—O2179.72 (16)C18—C17—C22—C210.1 (3)
C10—C8—C9—O22.1 (3)C16—C17—C22—C21176.28 (18)
C7—C8—C9—O11.38 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.972.543.477 (2)162
C2—H2B···Cl1ii0.972.693.5051 (19)142
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC22H20Cl2O3
Mr403.28
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)7.2624 (15), 12.117 (2), 12.679 (3)
α, β, γ (°)63.30 (2), 87.67 (3), 73.32 (1)
V3)949.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.938, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
7095, 3328, 2376
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.03
No. of reflections3328
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.972.543.477 (2)162.1
C2—H2B···Cl1ii0.972.693.5051 (19)142.1
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2.
 

References

First citationBretschneider, T., Benet-Buchholz, J., Fischer, R. & Nauen, R. (2003). Chimia, 57, 697–701.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, R. F. (2008). Fine Chem. 25, 708–709.  Google Scholar
First citationYu, M. X. (1994). Pestic. Sci. 33, 14–15.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds