metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-5-(5-carboxyl­ato-3-pyrid­yl)tetra­zolato-κ3N1,N5:N2]bis­­[tri­aqua­zinc(II)]

aInstitute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, People's Republic of China
*Correspondence e-mail: yhy@hdu.edu.cn

(Received 7 March 2009; accepted 16 March 2009; online 25 March 2009)

In the title complex, [Zn2(C7H3N5O2)2(H2O)6], the 5-(5-carboxyl­ato-3-pyrid­yl)tetra­zolate ligand chelates the ZnII center through one pyridyl N and one tetra­zolate N atom, and uses another N atom to bridge to the second Zn atom, forming a centrosymmetric dinuclear unit. Three coordinated water mol­ecules complete the distorted octa­hedral geometry of the ZnII atom. O—H⋯O and O—H⋯N hydrogen bonds involving the coordinated water mol­ecules, tetra­zolate N atoms and the carboxyl­ate group result in a three-dimensional structure.

Related literature

For background, see: Li et al. (2005[Li, J.-T., Tao, J., Huang, R.-B. & Zhang, L.-S. (2005). Acta Cryst. E61, m984-m985.]); Sun et al. (2009[Sun, Z.-H., Meng, L.-B. & Lin, H. (2009). Acta Cryst. E65, m280.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C7H3N5O2)2(H2O)6]

  • Mr = 617.12

  • Monoclinic, P 21 /c

  • a = 12.751 (5) Å

  • b = 12.685 (4) Å

  • c = 6.992 (3) Å

  • β = 104.914 (4)°

  • V = 1092.9 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 295 K

  • 0.12 × 0.08 × 0.08 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.880, Tmax = 1.000 (expected range = 0.734–0.834)

  • 8378 measured reflections

  • 2502 independent reflections

  • 2146 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.064

  • S = 1.10

  • 2502 reflections

  • 187 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O3 2.0547 (18)
Zn1—O5 2.0587 (19)
Zn1—O4 2.1317 (18)
Zn1—N5i 2.1333 (19)
Zn1—N2 2.1470 (18)
Zn1—N1 2.2114 (19)
O3—Zn1—O5 92.12 (8)
O3—Zn1—O4 85.92 (7)
O5—Zn1—O4 177.71 (8)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O2ii 0.846 (10) 1.942 (11) 2.782 (3) 172 (3)
O4—H4A⋯N3iii 0.841 (10) 2.110 (11) 2.940 (3) 169 (3)
O3—H3B⋯O1ii 0.849 (10) 1.875 (12) 2.712 (3) 169 (3)
O3—H3A⋯O1iv 0.846 (10) 1.880 (11) 2.719 (2) 171 (3)
O5—H5B⋯O1v 0.844 (10) 1.922 (13) 2.740 (3) 163 (3)
O5—H5A⋯N4vi 0.841 (10) 1.960 (10) 2.800 (3) 177 (3)
Symmetry codes: (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal complexes based on tetrazol ligands have attracted great interests (Li et al. 2005; Sun et al. 2009). In the contribution, we report the title binuclear complex (I) based on tetrazol ligand obtained by in situ ligand synthesis.

In the structure of (I), 3-carboxylatopyridyl-6-tetrazolato ligand chelates ZnII center through one pyridyl N and one tetrazolato N and another bridging tetrazolato N atom results in a centrosymmetrical binuclear unit. Three coordinated water molecules complete the distorted octahedral geometry of ZnII center (Fig.1). There exist various hydrogen-bonding interactions between coordinated water molecules and tetrazol N, carboxylate group of the ligand (Table. 2). The hydrogen bonds connect binuclear complex into a three-dimensional structure (Fig.2).

Related literature top

For background, see: Li et al. (2005); Sun et al. (2009).

Experimental top

A mixture of Zn(NO3)2.6H2O (149 mg, 0.5 mmol), sodium azide(33 mg, 0.5 mmol) and 6-cyanopyridine-3-carboxylic acid (74 mg, 0.5 mmol) was suspended in water (10 ml) and heated in a teflon-lined steel bomb at 160 ° C for 3 days. The colorless crystals were obtained.

Refinement top

H atoms bonded to C were located geometrically (C—H = 0.95 Å) with Uiso(H) = 1.2 Ueq(C). H atoms bonded to O were located by difference maps and refined with a distance restraint of O—H = 0.85 (1) Å. The displacement factors were freely refined.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of complex (I) with 30% thermal ellipsoids. [Symmetry code: (A) -x, 1-y, -z.]
[Figure 2] Fig. 2. The packing structure viewed along a axis.
Bis[µ-5-(5-carboxylato-3-pyridyl)tetrazolato- κ3N1,N5:N2]bis[triaquazinc(II)] top
Crystal data top
[Zn2(C7H3N5O2)2(H2O)6]F(000) = 624
Mr = 617.12Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2535 reflections
a = 12.751 (5) Åθ = 3.2–27.5°
b = 12.685 (4) ŵ = 2.27 mm1
c = 6.992 (3) ÅT = 295 K
β = 104.914 (4)°Prism, colorless
V = 1092.9 (7) Å30.12 × 0.08 × 0.08 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
2502 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.3°
CCD_Profile_fitting scansh = 1316
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1613
Tmin = 0.880, Tmax = 1.000l = 98
8378 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.4632P]
where P = (Fo2 + 2Fc2)/3
2502 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Zn2(C7H3N5O2)2(H2O)6]V = 1092.9 (7) Å3
Mr = 617.12Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.751 (5) ŵ = 2.27 mm1
b = 12.685 (4) ÅT = 295 K
c = 6.992 (3) Å0.12 × 0.08 × 0.08 mm
β = 104.914 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
2502 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
2146 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 1.000Rint = 0.031
8378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.44 e Å3
2502 reflectionsΔρmin = 0.31 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.16114 (2)0.451195 (18)0.04261 (4)0.01891 (9)
N10.29843 (15)0.55236 (13)0.1954 (3)0.0199 (4)
O20.62383 (14)0.48266 (13)0.2838 (3)0.0345 (4)
O10.67185 (13)0.64838 (12)0.3616 (2)0.0273 (4)
N20.08352 (15)0.59050 (14)0.1144 (3)0.0184 (4)
C10.60194 (19)0.57469 (18)0.3163 (3)0.0219 (5)
C40.3458 (2)0.72742 (18)0.3169 (4)0.0258 (5)
H40.32390.79530.34910.031*
C60.26966 (19)0.65036 (16)0.2412 (3)0.0196 (5)
C30.4544 (2)0.70372 (18)0.3447 (4)0.0260 (5)
H30.50790.75570.39580.031*
C20.48558 (18)0.60427 (17)0.2980 (3)0.0193 (5)
C50.40336 (19)0.53119 (17)0.2249 (3)0.0217 (5)
H50.42360.46240.19440.026*
O30.26729 (15)0.34205 (13)0.0178 (3)0.0278 (4)
O40.16780 (16)0.52386 (13)0.2289 (3)0.0277 (4)
C70.15272 (19)0.66661 (16)0.1971 (3)0.0184 (5)
O50.16098 (16)0.37901 (15)0.3062 (3)0.0353 (5)
N50.01525 (15)0.63182 (14)0.0916 (3)0.0195 (4)
N40.00558 (16)0.72963 (15)0.1574 (3)0.0250 (4)
N30.09973 (16)0.75412 (15)0.2242 (3)0.0245 (4)
H4A0.141 (2)0.5845 (12)0.254 (4)0.041 (9)*
H3A0.289 (2)0.2851 (13)0.042 (4)0.040 (8)*
H4B0.2293 (14)0.527 (2)0.254 (5)0.047 (9)*
H3B0.279 (2)0.339 (2)0.132 (2)0.045 (9)*
H5A0.114 (2)0.336 (2)0.320 (5)0.058 (10)*
H5B0.2086 (18)0.383 (2)0.415 (2)0.040 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01593 (16)0.01373 (14)0.02694 (15)0.00018 (10)0.00528 (11)0.00126 (10)
N10.0160 (10)0.0159 (9)0.0274 (10)0.0006 (7)0.0051 (8)0.0027 (8)
O20.0210 (10)0.0243 (9)0.0606 (12)0.0007 (7)0.0146 (9)0.0065 (8)
O10.0170 (9)0.0271 (9)0.0372 (10)0.0048 (7)0.0059 (8)0.0073 (7)
N20.0140 (10)0.0172 (9)0.0240 (10)0.0005 (7)0.0051 (8)0.0017 (7)
C10.0166 (13)0.0276 (13)0.0222 (12)0.0001 (9)0.0061 (10)0.0008 (9)
C40.0196 (13)0.0194 (11)0.0382 (14)0.0004 (9)0.0071 (11)0.0072 (10)
C60.0188 (13)0.0170 (11)0.0228 (11)0.0007 (9)0.0051 (10)0.0022 (9)
C30.0206 (13)0.0215 (12)0.0344 (14)0.0052 (10)0.0042 (11)0.0072 (10)
C20.0146 (12)0.0207 (11)0.0222 (12)0.0003 (9)0.0039 (9)0.0007 (9)
C50.0173 (13)0.0192 (11)0.0288 (12)0.0011 (9)0.0063 (10)0.0016 (9)
O30.0332 (11)0.0185 (9)0.0347 (10)0.0079 (7)0.0141 (9)0.0029 (8)
O40.0258 (11)0.0238 (9)0.0367 (10)0.0053 (7)0.0139 (9)0.0075 (8)
C70.0168 (12)0.0167 (10)0.0218 (11)0.0013 (8)0.0050 (9)0.0036 (9)
O50.0301 (12)0.0394 (11)0.0302 (10)0.0183 (9)0.0033 (9)0.0129 (8)
N50.0135 (10)0.0175 (9)0.0273 (10)0.0009 (7)0.0050 (8)0.0028 (8)
N40.0185 (11)0.0199 (10)0.0363 (12)0.0006 (8)0.0067 (9)0.0077 (8)
N30.0170 (11)0.0202 (10)0.0353 (11)0.0011 (8)0.0048 (9)0.0089 (8)
Geometric parameters (Å, º) top
Zn1—O32.0547 (18)C6—C71.457 (3)
Zn1—O52.0587 (19)C3—C21.386 (3)
Zn1—O42.1317 (18)C3—H30.9500
Zn1—N5i2.1333 (19)C2—C51.394 (3)
Zn1—N22.1470 (18)C5—H50.9500
Zn1—N12.2114 (19)O3—H3A0.846 (10)
N1—C51.328 (3)O3—H3B0.849 (10)
N1—C61.358 (3)O4—H4A0.841 (10)
O2—C11.235 (3)O4—H4B0.846 (10)
O1—C11.274 (3)C7—N31.338 (3)
N2—C71.335 (3)O5—H5A0.841 (10)
N2—N51.335 (2)O5—H5B0.844 (10)
C1—C21.504 (3)N5—N41.318 (3)
C4—C31.381 (3)N5—Zn1i2.1333 (19)
C4—C61.384 (3)N4—N31.340 (3)
C4—H40.9500
O3—Zn1—O592.12 (8)N1—C6—C7113.79 (19)
O3—Zn1—O485.92 (7)C4—C6—C7124.1 (2)
O5—Zn1—O4177.71 (8)C4—C3—C2120.2 (2)
O3—Zn1—N5i97.06 (7)C4—C3—H3119.9
O5—Zn1—N5i88.43 (7)C2—C3—H3119.9
O4—Zn1—N5i92.97 (7)C3—C2—C5117.2 (2)
O3—Zn1—N2166.01 (7)C3—C2—C1122.9 (2)
O5—Zn1—N292.86 (8)C5—C2—C1119.8 (2)
O4—Zn1—N288.79 (7)N1—C5—C2123.7 (2)
N5i—Zn1—N296.13 (7)N1—C5—H5118.1
O3—Zn1—N190.51 (7)C2—C5—H5118.1
O5—Zn1—N190.49 (7)Zn1—O3—H3A128.6 (19)
O4—Zn1—N188.35 (7)Zn1—O3—H3B121 (2)
N5i—Zn1—N1172.39 (7)H3A—O3—H3B108 (3)
N2—Zn1—N176.39 (7)Zn1—O4—H4A118.2 (19)
C5—N1—C6118.12 (19)Zn1—O4—H4B117 (2)
C5—N1—Zn1126.76 (14)H4A—O4—H4B105 (3)
C6—N1—Zn1114.64 (15)N2—C7—N3111.1 (2)
C7—N2—N5105.42 (17)N2—C7—C6121.04 (19)
C7—N2—Zn1113.79 (15)N3—C7—C6127.8 (2)
N5—N2—Zn1140.58 (14)Zn1—O5—H5A124 (2)
O2—C1—O1124.2 (2)Zn1—O5—H5B128 (2)
O2—C1—C2119.0 (2)H5A—O5—H5B108 (3)
O1—C1—C2116.8 (2)N4—N5—N2109.10 (17)
C3—C4—C6118.7 (2)N4—N5—Zn1i127.65 (14)
C3—C4—H4120.7N2—N5—Zn1i123.21 (13)
C6—C4—H4120.7N5—N4—N3109.59 (17)
N1—C6—C4122.1 (2)C7—N3—N4104.80 (18)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O2ii0.85 (1)1.94 (1)2.782 (3)172 (3)
O4—H4A···N3iii0.84 (1)2.11 (1)2.940 (3)169 (3)
O3—H3B···O1ii0.85 (1)1.88 (1)2.712 (3)169 (3)
O3—H3A···O1iv0.85 (1)1.88 (1)2.719 (2)171 (3)
O5—H5B···O1v0.84 (1)1.92 (1)2.740 (3)163 (3)
O5—H5A···N4vi0.84 (1)1.96 (1)2.800 (3)177 (3)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+3/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C7H3N5O2)2(H2O)6]
Mr617.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.751 (5), 12.685 (4), 6.992 (3)
β (°) 104.914 (4)
V3)1092.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.12 × 0.08 × 0.08
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.880, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8378, 2502, 2146
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.064, 1.10
No. of reflections2502
No. of parameters187
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Selected geometric parameters (Å, º) top
Zn1—O32.0547 (18)Zn1—N5i2.1333 (19)
Zn1—O52.0587 (19)Zn1—N22.1470 (18)
Zn1—O42.1317 (18)Zn1—N12.2114 (19)
O3—Zn1—O592.12 (8)O5—Zn1—O4177.71 (8)
O3—Zn1—O485.92 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O2ii0.846 (10)1.942 (11)2.782 (3)172 (3)
O4—H4A···N3iii0.841 (10)2.110 (11)2.940 (3)169 (3)
O3—H3B···O1ii0.849 (10)1.875 (12)2.712 (3)169 (3)
O3—H3A···O1iv0.846 (10)1.880 (11)2.719 (2)171 (3)
O5—H5B···O1v0.844 (10)1.922 (13)2.740 (3)163 (3)
O5—H5A···N4vi0.841 (10)1.960 (10)2.800 (3)177 (3)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+3/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from Zhejiang Provincial Natural Science Foundation of China (Y4080093 and Y407189).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationLi, J.-T., Tao, J., Huang, R.-B. & Zhang, L.-S. (2005). Acta Cryst. E61, m984–m985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Z.-H., Meng, L.-B. & Lin, H. (2009). Acta Cryst. E65, m280.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds