organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o860-o861

1-Ethyl-N′-[(E)-4-hy­droxy­benzyl­­idene]-7-methyl-4-oxo-1,4-di­hydro-1,8-naphthyridine-3-carbohydrazide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan, bDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, cDepartment of Physics, Sakarya University, Sakarya, Turkey, and dDepartment of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
*Correspondence e-mail: farahdeeba.pcsir@gmail.com

(Received 10 March 2009; accepted 12 March 2009; online 25 March 2009)

In the crystal structure of the title compound, C19H18N4O3, the fused-ring system is essentially planar [maximum deviation is 0.031 (2) Å] while the dihedral angle between the ring system and the benzene ring is 12.64 (6)°.The carbohydrazide H atom is involved in an intra­molecular N—H⋯O hydrogen bond, forming a six-membered hydrogen-bonded ring. The mol­ecules arrange themselves into centrosymmetric dimers by means of inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the synthesis of heterocyclic compounds, see: Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2378.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For their biological activity, see: Ferrarini et al. (2000[Ferrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815-819.]); Gavrilova & Bosnich (2004[Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.]); Goswami & Mukherjee (1997[Goswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619-1622.]); Hoock et al. (1999[Hoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264-271.]); Mintert & Sheldrick (1995[Mintert, M. & Sheldrick, W. S. (1995). J. Chem. Soc. Dalton Trans. pp. 2663-2669.]); Nakatani et al. (2000[Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172-2177.]); Nakataniz et al. (2001[Nakataniz, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc. 123, 12650-12657.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]). For similar mol­ecules, see: Catalano et al. (2000[Catalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem. 39, 121-127.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N4O3

  • Mr = 350.37

  • Monoclinic, P 21 /c

  • a = 7.6437 (2) Å

  • b = 13.3290 (2) Å

  • c = 17.2212 (4) Å

  • β = 98.1745 (14)°

  • V = 1736.72 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.2 × 0.14 × 0.1 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.990, Tmax = 0.991

  • 35553 measured reflections

  • 3583 independent reflections

  • 2597 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.151

  • S = 1.04

  • 3583 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1 0.91 (2) 1.91 (2) 2.660 (3) 139 (2)
O3—H3O⋯O2i 0.82 1.90 2.721 (3) 179
Symmetry code: (i) -x, -y-1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Derivatives of 1,8-naphthyridine have been investigated since a long ago due to their interesting complexation properties and medical uses. Such compounds are known to possess antibacterial (Chen et al., 2001), anti-inflammatory (Roma et al., 2000), anti-hypertensive, and anti-platelet activities (Ferrarini et al., 2000). These have also been widely utilized as molecular recognition receptors for urea, carboxylic acids and guanine (Goswami et al., 1997; Nakatani et al., 2000). Few 1,8-naphthyridine derivatives have been reported to be excellent fluorescent markers of nucleic acids (Hoock et al., 1999) and probe molecules (Nakataniz et al., 2001). In addition, these have received much attention due to the possibility of their linkage with metals in several coordination modes such as monodentate, chelating bidentate, and dinuclear bridging binding fashion (Gavrilova & Bosnich, 2004; Mintert & Sheldrick, 1995).

In continuation of our work on the synthesis, biological activity and crystal structures of various heterocyclic compounds (Zia-ur-Rehman et al., 2006; Zia-ur-Rehman et al., 2009), we herein report the synthesis and crystal structure of the title compound (I) (Scheme and figure 1). The structure of the basic naphthyridine ring consisting of two adjoined pyridine rings is planar while carbonyl oxygen O1 on C11 is involved in intramolecular hydrogen bonding giving rise to a six-membered hydrogen bond ring (Table 1). All bond distances are essentially identical to those found in the literature (Catalano et al., 2000).The molecules form centrosymmetric dimers through intermolecular O—H···O hydrogen bonds.

Related literature top

For the synthesis of heterocyclic compounds, see: Chen et al. (2001); Zia-ur-Rehman et al. (2006, 2009). For the biological activity, see: Ferrarini et al. (2000); Gavrilova & Bosnich (2004); Goswami & Mukherjee (1997); Hoock et al. (1999); Mintert & Sheldrick (1995); Nakatani et al. (2000); Nakataniz et al. (2001); Roma et al. (2000). For similar molecules, see: Catalano et al. (2000).

Experimental top

A mixture of 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (10.0 mmoles; 2.46 g), 4-hydroxy benzaldehyde (11.0 mmoles; 1.34 g), ortho phosphoric acid (2 drops) and ethyl alcohol (20.0 ml) was refluxed for a period of two hours. After completion of the reaction as indicated by TLC, three fourth of the solvent was evaporated and the contents were cooled to room temperature. Crystals obtained were washed with cold ethanol and dried; Yield: 92%.

Refinement top

H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å, O—H=0.82 Å) and treated as riding, with Uiso(H)=1.2Ueq(C) (for methine and methylene) or 1.5Ueq (methyl and hydroxyl). The N3 and C13 H atoms were located in a difference Fourier map

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
1-Ethyl-N'-[(E)-4-hydroxybenzylidene]-7-methyl-4-oxo-1,4- dihydro-1,8-naphthyridine-3-carbohydrazide top
Crystal data top
C19H18N4O3F(000) = 736
Mr = 350.37Dx = 1.34 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3643 reflections
a = 7.6437 (2) Åθ = 2.4–26.4°
b = 13.3290 (2) ŵ = 0.09 mm1
c = 17.2212 (4) ÅT = 293 K
β = 98.1745 (14)°Prism, light yellow
V = 1736.72 (7) Å30.2 × 0.14 × 0.1 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3583 independent reflections
Graphite monochromator2597 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.064
ω scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 89
Tmin = 0.990, Tmax = 0.991k = 1616
35553 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.3979P]
where P = (Fo2 + 2Fc2)/3
3583 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C19H18N4O3V = 1736.72 (7) Å3
Mr = 350.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6437 (2) ŵ = 0.09 mm1
b = 13.3290 (2) ÅT = 293 K
c = 17.2212 (4) Å0.2 × 0.14 × 0.1 mm
β = 98.1745 (14)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3583 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2597 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.991Rint = 0.064
35553 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
3583 reflectionsΔρmin = 0.16 e Å3
244 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2080 (2)0.01852 (11)0.57270 (8)0.0654 (4)
O30.1795 (2)0.65000 (11)0.71180 (9)0.0686 (4)
H3O0.17290.69190.67750.103*
N10.4591 (2)0.22498 (12)0.39012 (10)0.0556 (4)
N30.1243 (2)0.16773 (13)0.52592 (10)0.0554 (4)
N40.0658 (2)0.26173 (12)0.54348 (10)0.0554 (4)
O20.1598 (2)0.20967 (11)0.40138 (9)0.0750 (5)
N20.3819 (2)0.05987 (12)0.36073 (9)0.0532 (4)
C170.1341 (3)0.55811 (15)0.68611 (11)0.0524 (5)
C140.0321 (3)0.36963 (14)0.63803 (11)0.0517 (5)
C110.2538 (3)0.03007 (14)0.50649 (11)0.0505 (5)
C100.2423 (3)0.04590 (14)0.44689 (11)0.0493 (5)
C160.1130 (3)0.54200 (15)0.60834 (11)0.0567 (5)
H160.13150.5940.57210.068*
C90.3081 (3)0.02682 (15)0.37834 (12)0.0544 (5)
H90.30090.07790.34130.065*
C130.0289 (3)0.27273 (16)0.61292 (12)0.0561 (5)
C150.0647 (3)0.44868 (15)0.58534 (11)0.0590 (5)
H150.05330.4380.53290.071*
C60.3892 (3)0.13908 (14)0.41286 (11)0.0494 (5)
C180.1077 (3)0.48014 (16)0.73924 (11)0.0580 (5)
H180.12430.49030.79110.07*
C50.3272 (3)0.12561 (14)0.48473 (11)0.0500 (5)
C20.4702 (3)0.30211 (15)0.43905 (13)0.0586 (5)
C120.1715 (3)0.14835 (14)0.45515 (12)0.0539 (5)
C190.0567 (3)0.38686 (15)0.71523 (11)0.0562 (5)
H190.03850.33480.75150.067*
C10.5445 (3)0.39767 (17)0.41103 (15)0.0736 (7)
H1A0.57640.38750.35970.11*
H1C0.64740.41680.44660.11*
H1B0.45730.44980.40890.11*
C40.3414 (3)0.20843 (16)0.53477 (13)0.0648 (6)
H40.30230.20410.58340.078*
C30.4127 (4)0.29585 (17)0.51221 (13)0.0716 (6)
H30.42290.35110.54560.086*
C70.4608 (3)0.06988 (18)0.28730 (12)0.0679 (6)
H7A0.49110.00380.26980.082*
H7B0.56910.10860.29790.082*
C80.3387 (4)0.1199 (3)0.22344 (15)0.1028 (10)
H8B0.39560.12540.17740.154*
H8C0.30930.18570.24030.154*
H8A0.23280.08080.21160.154*
H130.045 (3)0.2191 (17)0.6511 (13)0.067 (6)*
H3N0.131 (3)0.1174 (17)0.5616 (13)0.070 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0978 (11)0.0566 (9)0.0456 (8)0.0032 (8)0.0238 (8)0.0018 (6)
O30.1010 (12)0.0523 (8)0.0579 (9)0.0040 (8)0.0296 (9)0.0053 (7)
N10.0569 (10)0.0537 (10)0.0566 (10)0.0026 (8)0.0098 (8)0.0042 (8)
N30.0732 (11)0.0448 (9)0.0499 (10)0.0026 (8)0.0139 (8)0.0024 (8)
N40.0676 (11)0.0446 (9)0.0551 (10)0.0016 (8)0.0125 (8)0.0040 (7)
O20.1160 (14)0.0533 (9)0.0596 (9)0.0130 (8)0.0259 (9)0.0086 (7)
N20.0632 (10)0.0529 (9)0.0466 (9)0.0036 (8)0.0186 (7)0.0010 (7)
C170.0623 (12)0.0483 (11)0.0491 (11)0.0007 (9)0.0159 (9)0.0051 (8)
C140.0608 (12)0.0479 (10)0.0481 (11)0.0006 (9)0.0131 (9)0.0019 (8)
C110.0581 (12)0.0503 (11)0.0436 (10)0.0056 (9)0.0093 (8)0.0023 (8)
C100.0561 (11)0.0473 (10)0.0452 (10)0.0009 (8)0.0090 (8)0.0025 (8)
C160.0767 (14)0.0502 (11)0.0454 (11)0.0023 (10)0.0165 (10)0.0024 (8)
C90.0658 (13)0.0496 (11)0.0492 (11)0.0001 (9)0.0132 (9)0.0043 (9)
C130.0698 (14)0.0492 (11)0.0507 (12)0.0003 (10)0.0130 (10)0.0005 (9)
C150.0837 (15)0.0531 (12)0.0438 (11)0.0039 (10)0.0210 (10)0.0011 (9)
C60.0526 (11)0.0486 (10)0.0472 (10)0.0016 (8)0.0082 (8)0.0019 (8)
C180.0748 (14)0.0598 (12)0.0422 (10)0.0000 (10)0.0186 (9)0.0041 (9)
C50.0579 (11)0.0487 (11)0.0439 (10)0.0003 (9)0.0084 (8)0.0012 (8)
C20.0617 (13)0.0507 (12)0.0619 (13)0.0030 (9)0.0038 (10)0.0032 (10)
C120.0644 (13)0.0476 (11)0.0505 (11)0.0016 (9)0.0109 (9)0.0002 (9)
C190.0724 (13)0.0526 (11)0.0454 (10)0.0008 (10)0.0143 (9)0.0043 (9)
C10.0827 (16)0.0550 (13)0.0837 (17)0.0096 (11)0.0138 (13)0.0068 (12)
C40.0901 (16)0.0577 (13)0.0476 (11)0.0027 (11)0.0130 (11)0.0034 (9)
C30.1043 (19)0.0523 (12)0.0586 (13)0.0098 (12)0.0126 (12)0.0079 (10)
C70.0866 (16)0.0671 (14)0.0573 (13)0.0084 (12)0.0348 (12)0.0037 (10)
C80.111 (2)0.144 (3)0.0552 (15)0.011 (2)0.0182 (15)0.0164 (17)
Geometric parameters (Å, º) top
O1—C111.249 (2)C16—H160.93
O3—C171.364 (2)C9—H90.93
O3—H3O0.82C13—H130.97 (2)
N1—C21.324 (3)C15—H150.93
N1—C61.345 (2)C6—C51.398 (3)
N3—C121.344 (3)C18—C191.384 (3)
N3—N41.378 (2)C18—H180.93
N3—H3N0.91 (2)C5—C41.395 (3)
N4—C131.275 (3)C2—C31.394 (3)
O2—C121.229 (2)C2—C11.502 (3)
N2—C91.340 (3)C19—H190.93
N2—C61.382 (2)C1—H1A0.96
N2—C71.482 (2)C1—H1C0.96
C17—C181.380 (3)C1—H1B0.96
C17—C161.388 (3)C4—C31.366 (3)
C14—C191.388 (3)C4—H40.93
C14—C151.390 (3)C3—H30.93
C14—C131.460 (3)C7—C81.495 (4)
C11—C101.436 (3)C7—H7A0.97
C11—C51.462 (3)C7—H7B0.97
C10—C91.371 (3)C8—H8B0.96
C10—C121.483 (3)C8—H8C0.96
C16—C151.372 (3)C8—H8A0.96
C17—O3—H3O109.5C19—C18—H18120
C2—N1—C6117.86 (17)C4—C5—C6116.04 (18)
C12—N3—N4120.71 (17)C4—C5—C11121.99 (18)
C12—N3—H3N118.4 (15)C6—C5—C11121.97 (17)
N4—N3—H3N120.9 (14)N1—C2—C3121.92 (19)
C13—N4—N3115.59 (17)N1—C2—C1116.5 (2)
C9—N2—C6119.42 (16)C3—C2—C1121.5 (2)
C9—N2—C7120.42 (17)O2—C12—N3123.72 (19)
C6—N2—C7120.13 (16)O2—C12—C10121.92 (18)
O3—C17—C18118.75 (17)N3—C12—C10114.36 (17)
O3—C17—C16121.44 (18)C18—C19—C14121.14 (19)
C18—C17—C16119.80 (18)C18—C19—H19119.4
C19—C14—C15117.65 (18)C14—C19—H19119.4
C19—C14—C13121.51 (18)C2—C1—H1A109.5
C15—C14—C13120.84 (18)C2—C1—H1C109.5
O1—C11—C10124.68 (18)H1A—C1—H1C109.5
O1—C11—C5120.61 (18)C2—C1—H1B109.5
C10—C11—C5114.70 (16)H1A—C1—H1B109.5
C9—C10—C11119.47 (18)H1C—C1—H1B109.5
C9—C10—C12115.90 (17)C3—C4—C5119.9 (2)
C11—C10—C12124.54 (17)C3—C4—H4120.1
C15—C16—C17119.46 (18)C5—C4—H4120.1
C15—C16—H16120.3C4—C3—C2119.8 (2)
C17—C16—H16120.3C4—C3—H3120.1
N2—C9—C10124.95 (18)C2—C3—H3120.1
N2—C9—H9117.5N2—C7—C8112.4 (2)
C10—C9—H9117.5N2—C7—H7A109.1
N4—C13—C14120.13 (19)C8—C7—H7A109.1
N4—C13—H13121.9 (13)N2—C7—H7B109.1
C14—C13—H13117.9 (13)C8—C7—H7B109.1
C16—C15—C14121.96 (18)H7A—C7—H7B107.9
C16—C15—H15119C7—C8—H8B109.5
C14—C15—H15119C7—C8—H8C109.5
N1—C6—N2116.22 (17)H8B—C8—H8C109.5
N1—C6—C5124.45 (18)C7—C8—H8A109.5
N2—C6—C5119.32 (17)H8B—C8—H8A109.5
C17—C18—C19119.94 (18)H8C—C8—H8A109.5
C17—C18—H18120
C12—N3—N4—C13178.2 (2)N2—C6—C5—C4179.03 (18)
O1—C11—C10—C9175.46 (19)N1—C6—C5—C11179.47 (18)
C5—C11—C10—C93.8 (3)N2—C6—C5—C110.3 (3)
O1—C11—C10—C121.1 (3)O1—C11—C5—C43.1 (3)
C5—C11—C10—C12179.61 (18)C10—C11—C5—C4177.57 (19)
O3—C17—C16—C15179.0 (2)O1—C11—C5—C6176.24 (19)
C18—C17—C16—C150.5 (3)C10—C11—C5—C63.1 (3)
C6—N2—C9—C102.4 (3)C6—N1—C2—C30.3 (3)
C7—N2—C9—C10175.4 (2)C6—N1—C2—C1178.45 (19)
C11—C10—C9—N21.3 (3)N4—N3—C12—O23.0 (3)
C12—C10—C9—N2178.10 (19)N4—N3—C12—C10176.28 (17)
N3—N4—C13—C14179.25 (18)C9—C10—C12—O25.6 (3)
C19—C14—C13—N4173.6 (2)C11—C10—C12—O2177.8 (2)
C15—C14—C13—N45.2 (3)C9—C10—C12—N3173.73 (18)
C17—C16—C15—C141.4 (3)C11—C10—C12—N32.9 (3)
C19—C14—C15—C162.4 (3)C17—C18—C19—C140.4 (3)
C13—C14—C15—C16176.5 (2)C15—C14—C19—C181.5 (3)
C2—N1—C6—N2179.19 (17)C13—C14—C19—C18177.4 (2)
C2—N1—C6—C50.0 (3)C6—C5—C4—C30.1 (3)
C9—N2—C6—N1177.63 (18)C11—C5—C4—C3179.3 (2)
C7—N2—C6—N14.5 (3)C5—C4—C3—C20.4 (4)
C9—N2—C6—C53.2 (3)N1—C2—C3—C40.5 (4)
C7—N2—C6—C5174.73 (19)C1—C2—C3—C4178.2 (2)
O3—C17—C18—C19178.2 (2)C9—N2—C7—C898.6 (3)
C16—C17—C18—C191.4 (3)C6—N2—C7—C883.5 (3)
N1—C6—C5—C40.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.91 (2)1.91 (2)2.660 (3)139 (2)
O3—H3O···O2i0.821.902.721 (3)179
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC19H18N4O3
Mr350.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6437 (2), 13.3290 (2), 17.2212 (4)
β (°) 98.1745 (14)
V3)1736.72 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.14 × 0.1
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.990, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
35553, 3583, 2597
Rint0.064
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 1.04
No. of reflections3583
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O10.91 (2)1.91 (2)2.660 (3)139 (2)
O3—H3O···O2i0.821.90002.721 (3)179.00
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant No. 2003/219 from the University Research Fund.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCatalano, V. J., Kar, H. M. & Bennett, B. L. (2000). Inorg. Chem. 39, 121–127.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrarini, P. L., Mori, C., Badawneh, M., Calderone, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Chem. 35, 815–819.  CrossRef CAS Google Scholar
First citationGavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoswami, S. & Mukherjee, R. (1997). Tetrahedron Lett. 38, 1619–1622.  CrossRef CAS Web of Science Google Scholar
First citationHoock, C., Reichert, J. & Schmidtke, M. (1999). Molecules, 4, 264–271.  Web of Science CrossRef CAS Google Scholar
First citationMintert, M. & Sheldrick, W. S. (1995). J. Chem. Soc. Dalton Trans. pp. 2663–2669.  CSD CrossRef Web of Science Google Scholar
First citationNakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172–2177.  Web of Science CrossRef CAS Google Scholar
First citationNakataniz, K., Sando, S., Kumasawa, H., Kikuchi, J. & Saito, I. (2001). J. Am. Chem. Soc. 123, 12650–12657.  Web of Science PubMed Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o860-o861
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds