metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m429-m430

Poly[octa-μ-aqua-tetra­aqua­bis­(μ4-5-sulfonato­benzene-1,3-di­carboxyl­ato)nickel(II)tetra­sodium]

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 12 March 2009; accepted 14 March 2009; online 25 March 2009)

In the crystal structure of the title compound, [Na4Ni(C8H3O7S)2(H2O)12]n, the NiII cation occupies an inversion centre and is coordinated by the carboxyl groups of the sulfoisophthalate trianions and water mol­ecules in a distorted octa­hedral geometry. Two independent NaI atoms are connected by the carboxyl and sulfonate groups of the sulfoisophthalate ligands anions and water mol­ecules in a distorted octa­hedral geometry. The sulfoisophthalate ligands and coordinated water mol­ecules bridge the NiII and NaI cations, forming a three-dimensional polymeric structure. Weak ππ stacking is present between parallel benzene rings [centroid–centroid distance = 3.9349 (10) Å]. Extensive O—H⋯O and C—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Pan et al. (2006[Pan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183-m2185.]). For the isotypic structure of the Co analogue, see: Zhang et al. (2009[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m387-m388.]).

[Scheme 1]

Experimental

Crystal data
  • [Na4Ni(C8H3O7S)2(H2O)12]

  • Mr = 853.19

  • Monoclinic, P 21 /n

  • a = 7.8770 (9) Å

  • b = 17.229 (2) Å

  • c = 11.7474 (13) Å

  • β = 93.292 (4)°

  • V = 1591.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 295 K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.770, Tmax = 0.835

  • 17574 measured reflections

  • 3107 independent reflections

  • 2866 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.071

  • S = 1.08

  • 3107 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Ni—O1 2.0252 (11)
Ni—O8 2.0731 (14)
Ni—O9 2.0727 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O13i 0.84 2.03 2.861 (2) 173
O8—H8B⋯O4ii 0.85 1.99 2.8130 (19) 162
O9—H9A⋯O7iii 0.85 2.16 2.9854 (17) 163
O9—H9B⋯O2 0.84 1.82 2.6168 (17) 159
O10—H10A⋯O7ii 0.83 2.04 2.8553 (19) 167
O10—H10B⋯O3iv 0.85 1.83 2.6615 (19) 165
O11—H11A⋯O7iii 0.89 1.90 2.7659 (18) 167
O11—H11B⋯O3iv 0.87 1.92 2.783 (2) 175
O12—H12A⋯O1v 0.84 2.11 2.9470 (18) 173
O12—H12B⋯O4vi 0.89 2.04 2.8994 (19) 163
O13—H13A⋯O4ii 0.84 1.94 2.733 (2) 157
O13—H13B⋯O6vii 0.88 2.21 2.9486 (19) 141
C7—H7⋯O11viii 0.93 2.50 3.371 (2) 157
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z+1; (vii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA 77381-5209.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of investigation on π-π stacking between aromatic rings (Su & Xu, 2004; Pan et al., 2006), the title NiII compound has recently been prepared in our laboratory, and its crystal structure is reported here.

A part of the three dimensional polymeric structure of the title compound is shown in Fig. 1. The NiII compound is isomorphous with the CoII compound (Zhang et al., 2009). The Ni atom occupies a special position in an inversion centre and assumes a distorted NiO6 octahedral geometry, The Ni—O bond distances (Table 1) are about 0.03 Å shorter than corresponding Co—O bond distances found in the isomorphous CoII compound. Both crystallograohically indenpendent NaI atoms are in distorted octahedral coordination geometry. The sulfoisophthalate trianions and water molecules bridge the metal atoms to form the polymeric structure.

The extensive O—H···O hydrogen bonding network presents in the crystal structue (Table 2), weak C—H···O hydrogen bonding also helps to stabilize the crystal structure. The distance between parallel the C2-benzne plane and C2v-benzene plane is 3.551 (9) Å [symmetry code: (v) 1 - x, 1 - y, -z], and the centroids distance between the benzene rings is 3.9349 (10) Å. These findings suggest a weak π-π stacking involving sulfoisophthlate ligand.

Related literature top

For general background, see: Su & Xu (2004); Pan et al. (2006). For a related structure, see: Zhang et al. (2009).

Experimental top

A water-ethanol solution (25 ml, 3:2) containing monosodium 5-sulfoisophthalate (0.270 g, 1 mmol), Na2CO3 (0.212 g, 2 mmol) and NiCl2.6H2O (0.600 g, 2.5 mmol) was refluxed for 8 h and filtered after cooling to room temperature. The single crystals of the title compound were obtained from the filtrate after 3 weeks.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions, with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A part of the polymeric structure of the title compound with 50% probability displacement (arbitrary spheres for H atoms) [symmetry codes: (i) -x + 3/2,+y - 1/2,-z + 1/2; (ii) -x + 1/2,+y - 1/2,-z + 1/2; (iii) -x + 1,-y + 1,-z + 1; (iv) x - 1/2,-y + 1/2,+z - 1/2; (v) -x + 1,-y + 1,-z].
Poly[octa-µ-aqua-tetraaquabis(µ4-5-sulfonatobenzene-1,3- dicarboxylato)nickel(II)tetrasodium] top
Crystal data top
[Na4Ni(C8H3O7S)2(H2O)12]F(000) = 876
Mr = 853.19Dx = 1.780 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2356 reflections
a = 7.8770 (9) Åθ = 2.5–25.0°
b = 17.229 (2) ŵ = 0.90 mm1
c = 11.7474 (13) ÅT = 295 K
β = 93.292 (4)°Prism, green
V = 1591.7 (3) Å30.30 × 0.22 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3107 independent reflections
Radiation source: fine-focus sealed tube2866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2121
Tmin = 0.770, Tmax = 0.835l = 1414
17574 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.7337P]
where P = (Fo2 + 2Fc2)/3
3107 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Na4Ni(C8H3O7S)2(H2O)12]V = 1591.7 (3) Å3
Mr = 853.19Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8770 (9) ŵ = 0.90 mm1
b = 17.229 (2) ÅT = 295 K
c = 11.7474 (13) Å0.30 × 0.22 × 0.20 mm
β = 93.292 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3107 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2866 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.835Rint = 0.023
17574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.08Δρmax = 0.42 e Å3
3107 reflectionsΔρmin = 0.40 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.01887 (10)
Na10.82068 (9)0.33240 (4)0.45637 (6)0.02989 (18)
Na20.40578 (9)0.26823 (4)0.20100 (6)0.02845 (17)
S0.28801 (5)0.73027 (2)0.01772 (3)0.01908 (11)
O10.42320 (16)0.52266 (7)0.33588 (10)0.0244 (3)
O20.42591 (19)0.40594 (7)0.25407 (10)0.0335 (3)
O30.1627 (2)0.37896 (8)0.12900 (12)0.0456 (4)
O40.11757 (18)0.47912 (8)0.24403 (11)0.0332 (3)
O50.45777 (16)0.74769 (7)0.01724 (11)0.0279 (3)
O60.25488 (18)0.76128 (7)0.12908 (10)0.0291 (3)
O70.15727 (16)0.75328 (7)0.06942 (11)0.0267 (3)
O80.75086 (17)0.51710 (9)0.46157 (11)0.0362 (3)
H8A0.81910.54030.50740.054*
H8B0.77890.52740.39410.054*
O90.53288 (16)0.38303 (6)0.46643 (10)0.0238 (3)
H9A0.46450.35340.49970.036*
H9B0.50210.37850.39750.036*
O100.70115 (18)0.26289 (7)0.28653 (11)0.0336 (3)
H10A0.75400.26290.22770.050*
H10B0.69970.21520.30410.050*
O110.68483 (16)0.21970 (8)0.55884 (12)0.0327 (3)
H11A0.57640.22660.57240.049*
H11B0.67880.18660.50330.049*
O120.87077 (17)0.37265 (7)0.65035 (11)0.0312 (3)
H12A0.79260.40470.65850.047*
H12B0.95520.39640.68970.047*
O131.03972 (18)0.40442 (8)0.36780 (12)0.0354 (3)
H13A1.00400.43380.31480.053*
H13B1.11220.37260.33780.053*
C10.4055 (2)0.47741 (9)0.25112 (14)0.0205 (3)
C20.3474 (2)0.51522 (9)0.13980 (14)0.0211 (3)
C30.3448 (2)0.59532 (9)0.12908 (13)0.0210 (3)
H30.38620.62660.18890.025*
C40.2800 (2)0.62800 (9)0.02841 (14)0.0187 (3)
C50.2204 (2)0.58282 (9)0.06300 (14)0.0218 (3)
H50.17740.60600.13010.026*
C60.2258 (2)0.50242 (9)0.05294 (14)0.0224 (4)
C70.2909 (2)0.46959 (10)0.04849 (14)0.0244 (4)
H70.29660.41590.05510.029*
C80.1644 (2)0.44968 (10)0.15014 (14)0.0240 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02441 (18)0.01777 (16)0.01396 (16)0.00201 (11)0.00293 (12)0.00019 (10)
Na10.0270 (4)0.0368 (4)0.0256 (4)0.0015 (3)0.0011 (3)0.0022 (3)
Na20.0305 (4)0.0314 (4)0.0234 (4)0.0003 (3)0.0012 (3)0.0038 (3)
S0.0229 (2)0.01610 (19)0.0184 (2)0.00051 (15)0.00256 (15)0.00059 (14)
O10.0382 (7)0.0198 (6)0.0145 (6)0.0029 (5)0.0053 (5)0.0005 (5)
O20.0610 (9)0.0186 (6)0.0196 (6)0.0057 (6)0.0087 (6)0.0003 (5)
O30.0870 (12)0.0189 (7)0.0285 (7)0.0022 (7)0.0168 (7)0.0035 (5)
O40.0503 (8)0.0298 (7)0.0181 (6)0.0013 (6)0.0090 (6)0.0012 (5)
O50.0249 (7)0.0297 (7)0.0294 (7)0.0062 (5)0.0045 (5)0.0013 (5)
O60.0448 (8)0.0212 (6)0.0221 (7)0.0007 (5)0.0094 (6)0.0036 (5)
O70.0272 (7)0.0243 (6)0.0284 (7)0.0031 (5)0.0006 (5)0.0058 (5)
O80.0294 (7)0.0570 (9)0.0223 (7)0.0067 (6)0.0020 (5)0.0017 (6)
O90.0336 (7)0.0187 (6)0.0185 (6)0.0011 (5)0.0041 (5)0.0004 (5)
O100.0472 (8)0.0290 (7)0.0246 (7)0.0009 (6)0.0034 (6)0.0035 (5)
O110.0276 (7)0.0317 (7)0.0381 (8)0.0043 (5)0.0047 (6)0.0062 (6)
O120.0337 (7)0.0291 (7)0.0304 (7)0.0028 (5)0.0013 (6)0.0073 (5)
O130.0381 (8)0.0312 (7)0.0370 (8)0.0066 (6)0.0037 (6)0.0064 (6)
C10.0265 (9)0.0194 (8)0.0153 (8)0.0006 (6)0.0020 (6)0.0009 (6)
C20.0269 (9)0.0205 (8)0.0155 (8)0.0012 (7)0.0012 (6)0.0005 (6)
C30.0268 (9)0.0203 (8)0.0157 (8)0.0007 (6)0.0002 (6)0.0017 (6)
C40.0213 (8)0.0166 (7)0.0185 (8)0.0010 (6)0.0024 (6)0.0004 (6)
C50.0276 (9)0.0218 (8)0.0156 (8)0.0006 (7)0.0023 (6)0.0023 (6)
C60.0290 (9)0.0219 (8)0.0161 (8)0.0005 (7)0.0021 (7)0.0012 (6)
C70.0360 (10)0.0170 (8)0.0198 (8)0.0003 (7)0.0024 (7)0.0005 (6)
C80.0312 (9)0.0221 (8)0.0182 (8)0.0002 (7)0.0027 (7)0.0026 (6)
Geometric parameters (Å, º) top
Ni—O1i2.0252 (11)O5—Na1vii2.3545 (14)
Ni—O12.0252 (11)O5—Na2vi2.4814 (14)
Ni—O8i2.0731 (14)O6—Na2viii2.4271 (14)
Ni—O82.0731 (14)O8—H8A0.8407
Ni—O92.0727 (11)O8—H8B0.8534
Ni—O9i2.0727 (11)O9—H9A0.8532
Na1—O5ii2.3545 (14)O9—H9B0.8358
Na1—O122.3930 (14)O10—H10A0.8273
Na1—O132.4095 (16)O10—H10B0.8481
Na1—O92.4382 (14)O11—Na2iii2.3511 (15)
Na1—O102.4669 (15)O11—H11A0.8860
Na1—O112.5519 (16)O11—H11B0.8656
Na1—Na2iii3.3901 (10)O12—Na2iii2.5105 (15)
Na2—O11iv2.3511 (15)O12—H12A0.8368
Na2—O6v2.4271 (14)O12—H12B0.8876
Na2—O22.4561 (14)O13—H13A0.8386
Na2—O5vi2.4814 (14)O13—H13B0.8789
Na2—O102.4825 (16)C1—C21.508 (2)
Na2—O12iv2.5105 (15)C2—C71.383 (2)
Na2—Na1iv3.3901 (10)C2—C31.386 (2)
S—O61.4505 (12)C3—C41.381 (2)
S—O51.4525 (13)C3—H30.9300
S—O71.4645 (13)C4—C51.386 (2)
S—C41.7680 (16)C5—C61.391 (2)
O1—C11.266 (2)C5—H50.9300
O2—C11.242 (2)C6—C71.390 (2)
O3—C81.244 (2)C6—C81.517 (2)
O4—C81.250 (2)C7—H70.9300
O1i—Ni—O1180.0O7—S—C4107.03 (7)
O1i—Ni—O987.70 (5)C1—O1—Ni130.04 (11)
O1—Ni—O992.30 (5)C1—O2—Na2160.79 (11)
O1i—Ni—O9i92.30 (5)S—O5—Na1vii136.10 (8)
O1—Ni—O9i87.70 (5)S—O5—Na2vi132.45 (8)
O9—Ni—O9i180.000 (1)Na1vii—O5—Na2vi88.98 (5)
O1i—Ni—O8i90.09 (5)S—O6—Na2viii152.77 (8)
O1—Ni—O8i89.91 (5)Ni—O8—H8A120.7
O9—Ni—O8i91.97 (5)Ni—O8—H8B122.2
O9i—Ni—O8i88.03 (5)H8A—O8—H8B107.8
O1i—Ni—O889.91 (5)Ni—O9—Na1118.93 (6)
O1—Ni—O890.09 (5)Ni—O9—H9A114.0
O9—Ni—O888.03 (5)Na1—O9—H9A114.9
O9i—Ni—O891.97 (5)Ni—O9—H9B104.1
O8i—Ni—O8180.0Na1—O9—H9B98.0
O5ii—Na1—O1279.14 (5)H9A—O9—H9B103.4
O5ii—Na1—O1385.05 (5)Na1—O10—Na2127.93 (6)
O12—Na1—O13100.31 (5)Na1—O10—H10A119.3
O5ii—Na1—O9151.89 (5)Na2—O10—H10A99.6
O12—Na1—O987.31 (5)Na1—O10—H10B106.5
O13—Na1—O9121.84 (5)Na2—O10—H10B96.3
O5ii—Na1—O10100.75 (5)H10A—O10—H10B102.5
O12—Na1—O10160.96 (6)Na2iii—O11—Na187.39 (5)
O13—Na1—O1098.64 (5)Na2iii—O11—H11A122.8
O9—Na1—O1084.27 (5)Na1—O11—H11A114.7
O5ii—Na1—O1173.06 (5)Na2iii—O11—H11B126.9
O12—Na1—O1179.75 (5)Na1—O11—H11B98.8
O13—Na1—O11157.76 (5)H11A—O11—H11B102.2
O9—Na1—O1180.39 (5)Na1—O12—Na2iii87.44 (5)
O10—Na1—O1182.02 (5)Na1—O12—H12A102.6
O5ii—Na1—Na2iii47.04 (4)Na2iii—O12—H12A133.0
O12—Na1—Na2iii47.71 (4)Na1—O12—H12B135.0
O13—Na1—Na2iii121.18 (4)Na2iii—O12—H12B104.7
O9—Na1—Na2iii106.32 (4)H12A—O12—H12B99.8
O10—Na1—Na2iii119.01 (4)Na1—O13—H13A114.4
O11—Na1—Na2iii43.85 (3)Na1—O13—H13B110.5
O11iv—Na2—O6v100.89 (5)H13A—O13—H13B106.1
O11iv—Na2—O297.43 (5)O2—C1—O1125.48 (15)
O6v—Na2—O282.41 (5)O2—C1—C2118.99 (14)
O11iv—Na2—O5vi74.44 (5)O1—C1—C2115.47 (14)
O6v—Na2—O5vi169.25 (5)C7—C2—C3119.56 (15)
O2—Na2—O5vi107.62 (5)C7—C2—C1119.68 (15)
O11iv—Na2—O10158.30 (6)C3—C2—C1120.73 (14)
O6v—Na2—O10100.73 (5)C4—C3—C2119.12 (15)
O2—Na2—O1083.55 (5)C4—C3—H3120.4
O5vi—Na2—O1084.57 (5)C2—C3—H3120.4
O11iv—Na2—O12iv81.40 (5)C3—C4—C5121.77 (15)
O6v—Na2—O12iv95.27 (5)C3—C4—S117.02 (12)
O2—Na2—O12iv177.18 (6)C5—C4—S121.10 (12)
O5vi—Na2—O12iv74.58 (5)C4—C5—C6119.09 (15)
O10—Na2—O12iv98.50 (5)C4—C5—H5120.5
O11iv—Na2—Na1iv48.76 (4)C6—C5—H5120.5
O6v—Na2—Na1iv125.80 (4)C7—C6—C5119.09 (15)
O2—Na2—Na1iv135.72 (4)C7—C6—C8119.18 (14)
O5vi—Na2—Na1iv43.98 (3)C5—C6—C8121.73 (15)
O10—Na2—Na1iv117.34 (4)C2—C7—C6121.34 (15)
O12iv—Na2—Na1iv44.84 (3)C2—C7—H7119.3
O6—S—O5113.27 (8)C6—C7—H7119.3
O6—S—O7112.03 (8)O3—C8—O4124.58 (16)
O5—S—O7111.61 (8)O3—C8—C6116.32 (15)
O6—S—C4107.10 (7)O4—C8—C6119.10 (15)
O5—S—C4105.26 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+3/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O13ix0.842.032.861 (2)173
O8—H8B···O4vi0.851.992.8130 (19)162
O9—H9A···O7v0.852.162.9854 (17)163
O9—H9B···O20.841.822.6168 (17)159
O10—H10A···O7vi0.832.042.8553 (19)167
O10—H10B···O3iii0.851.832.6615 (19)165
O11—H11A···O7v0.891.902.7659 (18)167
O11—H11B···O3iii0.871.922.783 (2)175
O12—H12A···O1i0.842.112.9470 (18)173
O12—H12B···O4x0.892.042.8994 (19)163
O13—H13A···O4vi0.841.942.733 (2)157
O13—H13B···O6ii0.882.212.9486 (19)141
C7—H7···O11iv0.932.503.371 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x+1, y+1, z; (ix) x+2, y+1, z+1; (x) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Na4Ni(C8H3O7S)2(H2O)12]
Mr853.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.8770 (9), 17.229 (2), 11.7474 (13)
β (°) 93.292 (4)
V3)1591.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.770, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
17574, 3107, 2866
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.08
No. of reflections3107
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni—O12.0252 (11)Ni—O92.0727 (11)
Ni—O82.0731 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O13i0.842.032.861 (2)173
O8—H8B···O4ii0.851.992.8130 (19)162
O9—H9A···O7iii0.852.162.9854 (17)163
O9—H9B···O20.841.822.6168 (17)159
O10—H10A···O7ii0.832.042.8553 (19)167
O10—H10B···O3iv0.851.832.6615 (19)165
O11—H11A···O7iii0.891.902.7659 (18)167
O11—H11B···O3iv0.871.922.783 (2)175
O12—H12A···O1v0.842.112.9470 (18)173
O12—H12B···O4vi0.892.042.8994 (19)163
O13—H13A···O4ii0.841.942.733 (2)157
O13—H13B···O6vii0.882.212.9486 (19)141
C7—H7···O11viii0.932.503.371 (2)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y, z+1; (vii) x+3/2, y1/2, z+1/2; (viii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m2183–m2185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA 77381-5209.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m387–m388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m429-m430
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds