organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o929-o930

N-(2-Furo­yl)-N′-(2-pyrid­yl)thio­urea

aLaboratory of Molecular Engineering, Institute of Materials (IMRE), University of Havana, Cuba, bDepartamento de Química Inorgánica, Facultad de Química, Universidad de La Habana, Cuba, cLaboratório de Física, Universidade Federal do Tocantins, Palmas, Tocantins, Brazil, and dInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: osvaldo@imre.oc.uh.cu

(Received 16 March 2009; accepted 26 March 2009; online 31 March 2009)

The title compound, C11H9N3O2S, crystallizes with two independent mol­ecules in the asymmetric unit. The central thio­urea core makes dihedral angles of −3.3 (3) and 0.6 (3)° with the furan carbonyl groups in each mol­ecule, whereas the pyridine ring is inclined by 4.63 (2) and 11.28 (7)°, respectively. The transcis geometry of the thio­urea fragment is stabilized by an intra­molecular N—H⋯N hydrogen bond between the H atom of the cis-thio­amide group and the pyridine N atom. In the crystal structure, inter­molecular bifurcated N—H⋯S and N—H⋯O hydrogen bonds form centrosymmetric tetra­mers extending along the b axis.

Related literature

For general background, see: Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]); Su et al. (2006[Su, B. Q., Liu, G. L. & Sheng, L. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 745-750.]). For related structures, see: Duque et al. (2008[Duque, J., Estévez-Hernández, O., Mascarenhas, Y., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1457.]); Corrêa et al. (2008[Corrêa, R. S., Estévez-Hernández, O., Ellena, J. & Duque, J. (2008). Acta Cryst. E64, o1414.]); Theodoro et al. (2008[Theodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193.]); Valdés-Martínez et al. (2002[Valdés-Martínez, J., Hernández-Ortega, S., Espinosa-Pérez, G., Presto, C., Haslow, K. D., Ackerman, L. J., Szczepura, L. F., Goldberg, K. I., Kaminsky, W. & West, D. X. (2002). J. Mol. Struct. 608, 77-87.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o513.]). For the synthesis, see: Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamarro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O2S

  • Mr = 247.27

  • Monoclinic, P 21 /c

  • a = 6.9510 (1) Å

  • b = 15.7000 (4) Å

  • c = 20.2700 (6) Å

  • β = 90.284 (2)°

  • V = 2212.05 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Enraf–Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 22281 measured reflections

  • 4337 independent reflections

  • 3574 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.10

  • 4337 reflections

  • 323 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.89 (2) 2.23 (2) 2.653 (2) 109.3 (18)
N1—H1⋯N3 0.89 (2) 1.84 (2) 2.612 (2) 145 (2)
N1A—H1A⋯O2A 0.87 (2) 2.22 (2) 2.661 (2) 111.6 (18)
N1A—H1A⋯N3A 0.87 (2) 1.90 (2) 2.632 (2) 141 (2)
N2—H2⋯O1Ai 0.84 (3) 2.13 (2) 2.940 (2) 162 (2)
N2A—H2A⋯S1Ai 0.86 (2) 2.51 (2) 3.3530 (15) 170 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The importance of aroylthioureas is found largely in heterocyclic syntheses and many of these substrates have interesting biological activities (Aly et al., 2007). Aroylthioureas have also attracted much attention because of their unique properties, such as the strong coordination ability (Su et al., 2006). The title compound (I), Fig. 1, was synthesized from furoyl isothiocyanate and 2-aminopyridine in dry acetone. Studies of a number of substituted thioureas, including N-furoylthioureas, show intramolecular hydrogen bonding between N'H and the furoyl oxygen (Duque et al., 2008; Theodoro et al., 2008; Corrêa et al., 2008). There is also an intermolecular NH hydrogen bond with a sulfur of a neighboring molecule to form a two-dimensional network in these latter thioureas. The molecule structure of the title compound is shown in Figure 1. This thiourea derivative, like other pyridyl thioureas, is found in a conformation resulting from intramolecular hydrogen bonding of N2H(N'H) to the pyridine nitrogen, N3, and cis-cis like N-phenyl- N'-(2-pyridyl)thiourea derivatives (Valdés-Martínez et al., 2002). The title compound crystallizes in the thioamide form with two independent molecules in the asymmetric unit. The main bond lengths are within the ranges obtained for similar compounds (Koch et al., 2001 and Pérez et al. 2008). The C2—S1 and C1—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1, C2—N2 and C1—N2 bonds indicate partial double bond character. These results can be explained by the existence of resonance in this part of the molecule. The C=S distance for compound I (two unique molecules) averages 1.667 (2) Å. The furan carbonyl (O1—C1—C3—O2 and O1a—C1a—C3a—O2a, two unique molecules) groups are inclined at an angle of -3.3 (3) ° and 0.6 (3) ° with respect to the plane formed by the thiourea moiety, whereas the 2-pyridyl (C7—C8—C9—C10—C11 and C7a—C8a—C9a—C10a—C11a, two unique molecules) rings are inclined at an angle of -3.3 (3) ° and 0.6 (3) °, respectively. In addition, the dihedral angles of two independent molecules between the furoyl groups and pyridine ring planes are 85.1 (2)° and 82.96 (8) °, respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N1—H1···N3 intramolecular hydrogen bond. Another weaker bifurcated intramolecular hydrogen interaction between the furan oxygen atom O2 and the N1—H1 hydrogen atom is observed. The crystal structure is very interesting, stabilized by intermolecular bifurcated N—H···S (non bonding distance of 3.353 (2) Å and bond angle of 170 (2)°) and N—H···O (non bonding distance of 2.940 (2) Å and bond angle of 162 (2)°) hydrogen bonds forming centrosymmetric tetramers extending along the b axis.

Related literature top

For general background, see: Aly et al. (2007); Su et al. (2006). For related structures, see: Duque et al. (2008); Corrêa et al. (2008); Theodoro et al. (2008); Valdés-Martínez et al. (2002); Koch et al. (2001); Pérez et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Experimental top

The title compound (I) was synthesized according to a previous report (Otazo-Sánchez et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with 2-aminopyridine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 150–151 °C). Elemental analysis (%) for C11H9N3O2S calculated: C 53.44, H 3.64, N 17.00, S 12.96; found: C 53.50, H 3.46, N 16.99, S 12.58.

Refinement top

H atoms on the C atoms were positioned geometrically with C—H = 0.93–0.97 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(parent atom).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
N-(2-Furoyl)-N'-(2-pyridyl)thiourea top
Crystal data top
C11H9N3O2SF(000) = 1024
Mr = 247.27Dx = 1.485 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13181 reflections
a = 6.9510 (1) Åθ = 2.9–26.0°
b = 15.7000 (4) ŵ = 0.29 mm1
c = 20.2700 (6) ÅT = 150 K
β = 90.284 (2)°Block, colorless
V = 2212.05 (9) Å30.12 × 0.08 × 0.06 mm
Z = 8
Data collection top
Enraf–Nonius KappaCCD
diffractometer
3574 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Enraf Nonius FR590Rint = 0.060
Horizontally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 2.9°
ϕ scans and ω scans with κ offsetsh = 88
22281 measured reflectionsk = 1918
4337 independent reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.3338P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.45 e Å3
4337 reflectionsΔρmin = 0.46 e Å3
323 parameters
Crystal data top
C11H9N3O2SV = 2212.05 (9) Å3
Mr = 247.27Z = 8
Monoclinic, P21/cMo Kα radiation
a = 6.9510 (1) ŵ = 0.29 mm1
b = 15.7000 (4) ÅT = 150 K
c = 20.2700 (6) Å0.12 × 0.08 × 0.06 mm
β = 90.284 (2)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
3574 reflections with I > 2σ(I)
22281 measured reflectionsRint = 0.060
4337 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.45 e Å3
4337 reflectionsΔρmin = 0.46 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.26900 (7)0.58701 (3)0.01361 (2)0.03185 (16)
S10.86024 (7)0.20621 (3)0.13099 (2)0.03742 (17)
N1A0.0427 (2)0.55696 (11)0.09207 (8)0.0285 (4)
O1A0.12681 (18)0.64878 (9)0.02319 (7)0.0327 (3)
O20.7008 (2)0.07818 (9)0.00044 (7)0.0379 (4)
N30.8621 (2)0.08935 (10)0.07607 (8)0.0313 (4)
N2A0.3235 (2)0.48042 (10)0.08445 (8)0.0292 (4)
N10.7790 (2)0.07419 (10)0.04921 (9)0.0297 (4)
O2A0.23343 (19)0.56744 (9)0.18216 (7)0.0370 (3)
N20.8903 (2)0.19839 (11)0.00248 (8)0.0278 (4)
C30.6597 (3)0.06607 (12)0.06512 (10)0.0311 (4)
C2A0.2051 (2)0.53986 (12)0.05684 (9)0.0268 (4)
C10.6980 (3)0.01830 (13)0.09411 (10)0.0330 (4)
C110.8702 (3)0.06331 (14)0.13915 (10)0.0370 (5)
H110.84520.00630.14830.044*
N3A0.1495 (2)0.44154 (11)0.17897 (8)0.0316 (4)
C1A0.1108 (3)0.60931 (12)0.07437 (9)0.0277 (4)
C11A0.1415 (3)0.40025 (13)0.23715 (10)0.0358 (5)
H11A0.02870.40350.26150.043*
C7A0.3113 (3)0.43617 (12)0.14412 (10)0.0294 (4)
C70.8961 (2)0.17098 (12)0.06335 (9)0.0270 (4)
O10.6582 (3)0.03377 (10)0.15091 (8)0.0527 (4)
C80.9405 (3)0.23029 (14)0.11254 (10)0.0340 (4)
H80.96410.28710.10220.041*
C3A0.2598 (3)0.61301 (12)0.12527 (9)0.0290 (4)
C6A0.3910 (3)0.58333 (14)0.22036 (11)0.0404 (5)
H6A0.41160.56040.2620.048*
C10A0.2925 (3)0.35352 (14)0.26215 (11)0.0411 (5)
H10A0.28230.32570.30250.049*
C4A0.4268 (3)0.65642 (12)0.12727 (10)0.0312 (4)
H4A0.47670.69210.09480.037*
C60.6596 (3)0.16117 (14)0.01396 (12)0.0418 (5)
H60.67440.18670.05510.05*
C90.9482 (3)0.20191 (14)0.17660 (11)0.0401 (5)
H90.97660.23980.21050.048*
C20.8401 (2)0.15650 (12)0.05889 (9)0.0275 (4)
C5A0.5112 (3)0.63660 (14)0.18931 (11)0.0368 (5)
H5A0.62790.65690.20520.044*
C100.9135 (3)0.11655 (15)0.19077 (10)0.0389 (5)
H100.91950.09630.23380.047*
C9A0.4598 (3)0.34887 (15)0.22583 (11)0.0448 (5)
H9A0.56450.31820.24180.054*
C40.5942 (3)0.13956 (14)0.09150 (12)0.0410 (5)
H40.55610.14850.1350.049*
C8A0.4710 (3)0.38987 (14)0.16572 (10)0.0379 (5)
H8A0.58180.38670.14030.045*
C50.5951 (3)0.20049 (14)0.03991 (12)0.0410 (5)
H50.55770.25720.04310.049*
H2A0.425 (3)0.4683 (14)0.0623 (11)0.037 (6)*
H20.934 (3)0.2477 (17)0.0082 (12)0.044 (7)*
H1A0.024 (3)0.5257 (16)0.1268 (12)0.043 (6)*
H10.796 (3)0.0567 (15)0.0081 (12)0.041 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0344 (3)0.0315 (3)0.0297 (3)0.00331 (19)0.00427 (19)0.0052 (2)
S10.0482 (3)0.0361 (3)0.0280 (3)0.0017 (2)0.0017 (2)0.0040 (2)
N1A0.0284 (8)0.0290 (9)0.0281 (9)0.0000 (6)0.0010 (6)0.0050 (7)
O1A0.0311 (7)0.0331 (7)0.0338 (8)0.0008 (6)0.0009 (5)0.0078 (6)
O20.0430 (8)0.0330 (8)0.0377 (9)0.0026 (6)0.0002 (6)0.0033 (6)
N30.0331 (8)0.0301 (9)0.0308 (9)0.0014 (7)0.0010 (6)0.0036 (7)
N2A0.0291 (8)0.0297 (9)0.0287 (9)0.0039 (7)0.0026 (6)0.0016 (7)
N10.0338 (9)0.0277 (9)0.0277 (9)0.0000 (6)0.0026 (7)0.0006 (7)
O2A0.0383 (8)0.0430 (9)0.0298 (8)0.0064 (6)0.0011 (6)0.0052 (6)
N20.0289 (8)0.0251 (9)0.0294 (9)0.0025 (7)0.0005 (6)0.0012 (7)
C30.0282 (9)0.0312 (10)0.0340 (11)0.0029 (8)0.0028 (7)0.0032 (8)
C2A0.0285 (9)0.0236 (10)0.0282 (10)0.0023 (7)0.0014 (7)0.0019 (7)
C10.0354 (10)0.0309 (11)0.0327 (12)0.0022 (8)0.0039 (8)0.0034 (8)
C110.0377 (11)0.0383 (12)0.0351 (12)0.0001 (9)0.0003 (8)0.0087 (9)
N3A0.0361 (9)0.0301 (9)0.0285 (9)0.0011 (7)0.0021 (6)0.0014 (7)
C1A0.0275 (9)0.0254 (10)0.0302 (11)0.0045 (7)0.0026 (7)0.0012 (8)
C11A0.0466 (12)0.0326 (11)0.0283 (11)0.0042 (9)0.0026 (8)0.0012 (8)
C7A0.0359 (10)0.0242 (9)0.0280 (10)0.0011 (8)0.0016 (8)0.0002 (8)
C70.0216 (8)0.0302 (10)0.0293 (10)0.0009 (7)0.0011 (7)0.0023 (8)
O10.0830 (12)0.0382 (9)0.0368 (9)0.0051 (8)0.0204 (8)0.0002 (7)
C80.0349 (10)0.0325 (11)0.0344 (11)0.0032 (8)0.0006 (8)0.0009 (9)
C3A0.0313 (10)0.0280 (10)0.0277 (10)0.0029 (8)0.0026 (7)0.0016 (8)
C6A0.0450 (12)0.0450 (13)0.0312 (12)0.0007 (9)0.0083 (9)0.0009 (9)
C10A0.0553 (13)0.0387 (12)0.0294 (11)0.0014 (10)0.0013 (9)0.0083 (9)
C4A0.0301 (10)0.0285 (10)0.0349 (11)0.0014 (8)0.0021 (7)0.0028 (8)
C60.0418 (12)0.0326 (12)0.0510 (14)0.0034 (9)0.0031 (9)0.0079 (10)
C90.0415 (11)0.0460 (13)0.0326 (12)0.0006 (9)0.0045 (8)0.0061 (10)
C20.0238 (8)0.0273 (10)0.0314 (11)0.0044 (7)0.0018 (7)0.0007 (8)
C5A0.0322 (10)0.0382 (12)0.0401 (12)0.0015 (9)0.0065 (8)0.0052 (9)
C100.0368 (11)0.0523 (14)0.0276 (11)0.0016 (9)0.0003 (8)0.0046 (10)
C9A0.0500 (13)0.0462 (13)0.0383 (13)0.0116 (10)0.0053 (10)0.0099 (10)
C40.0341 (11)0.0399 (12)0.0489 (14)0.0018 (9)0.0076 (9)0.0103 (10)
C8A0.0394 (11)0.0395 (12)0.0348 (12)0.0068 (9)0.0004 (8)0.0040 (9)
C50.0323 (11)0.0302 (11)0.0604 (15)0.0014 (8)0.0008 (9)0.0028 (10)
Geometric parameters (Å, º) top
S1A—C2A1.6705 (19)N3A—C11A1.347 (3)
S1—C21.6633 (19)C1A—C3A1.467 (3)
N1A—C2A1.365 (2)C11A—C10A1.375 (3)
N1A—C1A1.393 (2)C11A—H11A0.93
N1A—H1A0.87 (2)C7A—C8A1.395 (3)
O1A—C1A1.213 (2)C7—C81.398 (3)
O2—C61.362 (3)C8—C91.373 (3)
O2—C31.371 (2)C8—H80.93
N3—C71.329 (2)C3A—C4A1.346 (3)
N3—C111.343 (3)C6A—C5A1.338 (3)
N2A—C2A1.363 (2)C6A—H6A0.93
N2A—C7A1.398 (3)C10A—C9A1.381 (3)
N2A—H2A0.86 (2)C10A—H10A0.93
N1—C21.375 (3)C4A—C5A1.425 (3)
N1—C11.382 (2)C4A—H4A0.93
N1—H10.89 (2)C6—C51.330 (3)
O2A—C6A1.367 (3)C6—H60.93
O2A—C3A1.369 (2)C9—C101.392 (3)
N2—C21.363 (2)C9—H90.93
N2—C71.402 (2)C5A—H5A0.93
N2—H20.84 (3)C10—H100.93
C3—C41.350 (3)C9A—C8A1.381 (3)
C3—C11.474 (3)C9A—H9A0.93
C1—O11.207 (2)C4—C51.417 (3)
C11—C101.371 (3)C4—H40.93
C11—H110.93C8A—H8A0.93
N3A—C7A1.334 (2)C5—H50.93
C2A—N1A—C1A128.01 (17)C9—C8—H8121.1
C2A—N1A—H1A116.0 (15)C7—C8—H8121.1
C1A—N1A—H1A115.3 (15)C4A—C3A—O2A110.57 (17)
C6—O2—C3106.52 (16)C4A—C3A—C1A130.76 (18)
C7—N3—C11118.14 (18)O2A—C3A—C1A118.66 (16)
C2A—N2A—C7A131.03 (17)C5A—C6A—O2A110.37 (19)
C2A—N2A—H2A115.6 (15)C5A—C6A—H6A124.8
C7A—N2A—H2A113.4 (15)O2A—C6A—H6A124.8
C2—N1—C1128.90 (18)C11A—C10A—C9A118.3 (2)
C2—N1—H1112.8 (15)C11A—C10A—H10A120.8
C1—N1—H1118.3 (15)C9A—C10A—H10A120.8
C6A—O2A—C3A106.10 (15)C3A—C4A—C5A105.96 (18)
C2—N2—C7131.01 (17)C3A—C4A—H4A127
C2—N2—H2114.8 (16)C5A—C4A—H4A127
C7—N2—H2114.0 (16)C5—C6—O2110.4 (2)
C4—C3—O2109.50 (18)C5—C6—H6124.8
C4—C3—C1132.2 (2)O2—C6—H6124.8
O2—C3—C1118.28 (17)C8—C9—C10120.1 (2)
N2A—C2A—N1A114.79 (17)C8—C9—H9119.9
N2A—C2A—S1A119.45 (14)C10—C9—H9119.9
N1A—C2A—S1A125.73 (14)N2—C2—N1114.32 (17)
O1—C1—N1126.22 (19)N2—C2—S1119.24 (15)
O1—C1—C3121.33 (18)N1—C2—S1126.44 (15)
N1—C1—C3112.44 (17)C6A—C5A—C4A107.00 (18)
N3—C11—C10123.3 (2)C6A—C5A—H5A126.5
N3—C11—H11118.4C4A—C5A—H5A126.5
C10—C11—H11118.4C11—C10—C9117.83 (19)
C7A—N3A—C11A118.13 (17)C11—C10—H10121.1
O1A—C1A—N1A126.07 (17)C9—C10—H10121.1
O1A—C1A—C3A121.29 (17)C10A—C9A—C8A119.8 (2)
N1A—C1A—C3A112.65 (16)C10A—C9A—H9A120.1
N3A—C11A—C10A123.00 (19)C8A—C9A—H9A120.1
N3A—C11A—H11A118.5C3—C4—C5106.5 (2)
C10A—C11A—H11A118.5C3—C4—H4126.7
N3A—C7A—C8A122.58 (18)C5—C4—H4126.7
N3A—C7A—N2A118.80 (17)C9A—C8A—C7A118.12 (19)
C8A—C7A—N2A118.60 (17)C9A—C8A—H8A120.9
N3—C7—C8122.89 (18)C7A—C8A—H8A120.9
N3—C7—N2118.45 (17)C6—C5—C4107.01 (19)
C8—C7—N2118.65 (17)C6—C5—H5126.5
C9—C8—C7117.75 (19)C4—C5—H5126.5
C6—O2—C3—C40.1 (2)C6A—O2A—C3A—C1A179.28 (17)
C6—O2—C3—C1177.81 (17)O1A—C1A—C3A—C4A0.9 (3)
C7A—N2A—C2A—N1A2.9 (3)N1A—C1A—C3A—C4A179.17 (19)
C7A—N2A—C2A—S1A175.31 (16)O1A—C1A—C3A—O2A179.68 (17)
C1A—N1A—C2A—N2A174.81 (17)N1A—C1A—C3A—O2A0.4 (2)
C1A—N1A—C2A—S1A7.1 (3)C3A—O2A—C6A—C5A0.2 (2)
C2—N1—C1—O13.4 (3)N3A—C11A—C10A—C9A0.0 (3)
C2—N1—C1—C3177.41 (17)O2A—C3A—C4A—C5A0.3 (2)
C4—C3—C1—O15.4 (3)C1A—C3A—C4A—C5A179.11 (19)
O2—C3—C1—O1177.24 (19)C3—O2—C6—C50.1 (2)
C4—C3—C1—N1175.4 (2)C7—C8—C9—C100.4 (3)
O2—C3—C1—N12.0 (2)C7—N2—C2—N12.3 (3)
C7—N3—C11—C100.6 (3)C7—N2—C2—S1176.68 (14)
C2A—N1A—C1A—O1A0.7 (3)C1—N1—C2—N2171.78 (17)
C2A—N1A—C1A—C3A179.38 (17)C1—N1—C2—S19.3 (3)
C7A—N3A—C11A—C10A0.4 (3)O2A—C6A—C5A—C4A0.0 (2)
C11A—N3A—C7A—C8A0.1 (3)C3A—C4A—C5A—C6A0.1 (2)
C11A—N3A—C7A—N2A178.41 (17)N3—C11—C10—C90.8 (3)
C2A—N2A—C7A—N3A9.8 (3)C8—C9—C10—C110.7 (3)
C2A—N2A—C7A—C8A168.59 (19)C11A—C10A—C9A—C8A0.7 (4)
C11—N3—C7—C80.3 (3)O2—C3—C4—C50.2 (2)
C11—N3—C7—N2179.18 (16)C1—C3—C4—C5177.4 (2)
C2—N2—C7—N35.8 (3)C10A—C9A—C8A—C7A0.9 (3)
C2—N2—C7—C8175.35 (17)N3A—C7A—C8A—C9A0.5 (3)
N3—C7—C8—C90.2 (3)N2A—C7A—C8A—C9A177.75 (19)
N2—C7—C8—C9179.06 (16)O2—C6—C5—C40.0 (2)
C6A—O2A—C3A—C4A0.3 (2)C3—C4—C5—C60.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (2)2.23 (2)2.653 (2)109.3 (18)
N1—H1···N30.89 (2)1.84 (2)2.612 (2)145 (2)
N1A—H1A···O2A0.87 (2)2.22 (2)2.661 (2)111.6 (18)
N1A—H1A···N3A0.87 (2)1.90 (2)2.632 (2)141 (2)
N2—H2···O1Ai0.84 (3)2.13 (2)2.940 (2)162 (2)
N2A—H2A···S1Ai0.86 (2)2.51 (2)3.3530 (15)170 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H9N3O2S
Mr247.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)6.9510 (1), 15.7000 (4), 20.2700 (6)
β (°) 90.284 (2)
V3)2212.05 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22281, 4337, 3574
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.10
No. of reflections4337
No. of parameters323
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.46

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (2)2.23 (2)2.653 (2)109.3 (18)
N1—H1···N30.89 (2)1.84 (2)2.612 (2)145 (2)
N1A—H1A···O2A0.87 (2)2.22 (2)2.661 (2)111.6 (18)
N1A—H1A···N3A0.87 (2)1.90 (2)2.632 (2)141 (2)
N2—H2···O1Ai0.84 (3)2.13 (2)2.940 (2)162 (2)
N2A—H2A···S1Ai0.86 (2)2.51 (2)3.3530 (15)170 (2)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Brazilian agency CNPq. OE-H thanks CONACyT of Mexico for research grant No. 61541.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationCorrêa, R. S., Estévez-Hernández, O., Ellena, J. & Duque, J. (2008). Acta Cryst. E64, o1414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuque, J., Estévez-Hernández, O., Mascarenhas, Y., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1457.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamarro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B. Q., Liu, G. L. & Sheng, L. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationTheodoro, J. E., Mascarenhas, Y., Ellena, J., Estévez-Hernández, O. & Duque, J. (2008). Acta Cryst. E64, o1193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationValdés-Martínez, J., Hernández-Ortega, S., Espinosa-Pérez, G., Presto, C., Haslow, K. D., Ackerman, L. J., Szczepura, L. F., Goldberg, K. I., Kaminsky, W. & West, D. X. (2002). J. Mol. Struct. 608, 77–87.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o929-o930
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds