organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-3-p-tolyl-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Huaiyin Teachers College, Huaian 223001, People's Republic of China
*Correspondence e-mail: sunxiaojun100@126.com

(Received 19 March 2009; accepted 20 March 2009; online 25 March 2009)

The title compound, C16H14ClNOS, a potent anti­bacterial chemical, features a dihedral angle of 49.4 (1)° between the 4-tolyl and thia­zolidinone rings, and a dihedral angle of 87.2 (5)° between the thia­zolidinone and 4-chloro­phenyl rings.

Related literature

For the synthesis, see: Srivastava et al. (2002[Srivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619-7624.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClNOS

  • Mr = 303.79

  • Orthorhombic, P b c a

  • a = 12.1591 (4) Å

  • b = 13.0708 (4) Å

  • c = 18.5125 (7) Å

  • V = 2942.18 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.92

  • 16959 measured reflections

  • 3377 independent reflections

  • 2205 reflections with I > 2˘I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.02

  • 3377 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-thiazolidinone ring system comprises the broad spectrum for a number of biologically active compounds.In recent years, 4-thiazolidinones are the most extensively investigated class of compounds, which exhibits various biological activities, such as anticancer, antitubercular, antibacterial and herbicidal activities. In view of these properties and in a continuation of our interest in the chemistry of 4-thiazolidinones, we have attempted to synthesize a series of 4-thiazolidinone derivatives, some of which have comparatively high antibacterial activity. The crystal structure determination of the title compound,(I), was undertaken to investigate the relationship between structure and antibacterial activity(Fig. 1). The molecular conformation is described by the dihedral angle between 4-methylbenzene ring and thiazolidinone ring of 49.4 (1)° and the dihedral angle between thiazolidinone ring and 4-chlorobenzene ring of 87.2 (5)°.

Related literature top

For the synthesis, see: Srivastava et al. (2002).

Experimental top

Compound (I) was synthesized according to the procedure of Tumul Srivastava et al. (2002). A crystal of (I) suitable for X-ray analysis was grown from an ethanol solution by slow evaporation at room temperature.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.99 (methylene), 1.00 (methylidyne) and 0.98 Å(methyl), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering schem. Displacement ellipsoids are drawn at the 30% probability level.
2-(4-Chlorophenyl)-3-p-tolyl-1,3-thiazolidin-4-one top
Crystal data top
C16H14ClNOSF(000) = 1264
Mr = 303.79Dx = 1.372 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2211 reflections
a = 12.1591 (4) Åθ = 2.5–25.0°
b = 13.0708 (4) ŵ = 0.40 mm1
c = 18.5125 (7) ÅT = 296 K
V = 2942.18 (17) Å3Plate, colorless
Z = 80.40 × 0.35 × 0.20 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3377 independent reflections
Radiation source: fine-focus sealed tube2205 reflections with I > 2˘I)
Graphite monochromatorRint = 0.058
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.2°
w\ scansh = 1415
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1616
Tmin = 0.85, Tmax = 0.92l = 2424
16959 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.6312P]
where P = (Fo2 + 2Fc2)/3
3377 reflections(Δ/σ)max = 0.002
182 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H14ClNOSV = 2942.18 (17) Å3
Mr = 303.79Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1591 (4) ŵ = 0.40 mm1
b = 13.0708 (4) ÅT = 296 K
c = 18.5125 (7) Å0.40 × 0.35 × 0.20 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2205 reflections with I > 2˘I)
Tmin = 0.85, Tmax = 0.92Rint = 0.058
16959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
3377 reflectionsΔρmin = 0.34 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66878 (17)0.93240 (14)0.34463 (11)0.0402 (5)
H10.61050.95350.31120.048*
C20.85314 (18)0.96718 (14)0.30086 (12)0.0399 (5)
C30.83681 (18)1.05986 (15)0.34764 (13)0.0467 (6)
H3A0.83101.12070.31790.056*
H3B0.89901.06810.38000.056*
C40.62581 (16)0.85053 (14)0.39467 (11)0.0368 (5)
C50.69556 (17)0.79865 (16)0.44122 (12)0.0434 (5)
H50.77080.81120.43910.052*
C60.65582 (18)0.72901 (15)0.49046 (12)0.0441 (5)
H60.70330.69490.52170.053*
C70.54441 (18)0.71086 (15)0.49257 (12)0.0429 (5)
C80.47397 (18)0.75886 (19)0.44628 (14)0.0546 (6)
H80.39900.74480.44780.065*
C90.51497 (18)0.82863 (18)0.39704 (13)0.0508 (6)
H90.46730.86110.36520.061*
C100.76107 (17)0.81131 (14)0.25927 (11)0.0380 (5)
C110.84795 (18)0.74324 (15)0.25858 (13)0.0468 (5)
H110.90900.75460.28770.056*
C120.8436 (2)0.65774 (16)0.21407 (14)0.0552 (6)
H120.90300.61300.21300.066*
C130.7532 (2)0.63756 (16)0.17140 (12)0.0519 (6)
C140.6660 (2)0.70546 (16)0.17427 (12)0.0510 (6)
H140.60370.69290.14650.061*
C150.66950 (18)0.79175 (15)0.21761 (12)0.0433 (5)
H150.61010.83650.21860.052*
C160.7492 (3)0.54493 (19)0.12222 (16)0.0780 (9)
H16A0.81760.50850.12520.117*
H16B0.73720.56680.07330.117*
H16C0.69020.50080.13700.117*
Cl10.49492 (5)0.62309 (5)0.55527 (4)0.0680 (2)
N10.76603 (13)0.90125 (11)0.30369 (9)0.0371 (4)
O10.93527 (13)0.95428 (11)0.26448 (9)0.0529 (4)
S10.71335 (6)1.04265 (4)0.39863 (3)0.0568 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (12)0.0425 (11)0.0373 (12)0.0056 (9)0.0029 (10)0.0017 (9)
C20.0395 (12)0.0439 (11)0.0364 (12)0.0001 (9)0.0021 (10)0.0069 (9)
C30.0489 (13)0.0427 (11)0.0484 (14)0.0029 (9)0.0055 (11)0.0022 (10)
C40.0358 (11)0.0427 (10)0.0319 (11)0.0016 (8)0.0025 (9)0.0025 (9)
C50.0305 (11)0.0568 (12)0.0429 (13)0.0040 (9)0.0001 (10)0.0055 (10)
C60.0405 (13)0.0533 (12)0.0385 (13)0.0006 (9)0.0027 (10)0.0038 (10)
C70.0431 (13)0.0470 (11)0.0385 (12)0.0054 (9)0.0083 (10)0.0005 (9)
C80.0306 (12)0.0760 (15)0.0571 (16)0.0067 (10)0.0021 (11)0.0084 (13)
C90.0403 (13)0.0668 (14)0.0452 (14)0.0062 (10)0.0020 (11)0.0077 (12)
C100.0431 (12)0.0387 (10)0.0322 (11)0.0010 (8)0.0073 (10)0.0046 (8)
C110.0419 (13)0.0472 (11)0.0512 (15)0.0024 (9)0.0064 (11)0.0056 (10)
C120.0616 (16)0.0423 (11)0.0616 (17)0.0112 (10)0.0206 (14)0.0076 (11)
C130.0736 (17)0.0411 (11)0.0409 (13)0.0031 (11)0.0150 (13)0.0008 (10)
C140.0659 (16)0.0492 (12)0.0379 (13)0.0041 (11)0.0044 (12)0.0001 (10)
C150.0489 (13)0.0429 (11)0.0381 (12)0.0045 (9)0.0015 (10)0.0013 (9)
C160.120 (2)0.0507 (14)0.0634 (18)0.0008 (15)0.0190 (18)0.0083 (13)
Cl10.0592 (4)0.0747 (4)0.0701 (5)0.0107 (3)0.0135 (3)0.0234 (4)
N10.0368 (9)0.0405 (8)0.0339 (9)0.0006 (7)0.0038 (8)0.0005 (7)
O10.0424 (9)0.0556 (9)0.0606 (11)0.0043 (7)0.0109 (8)0.0000 (8)
S10.0723 (5)0.0469 (3)0.0513 (4)0.0062 (3)0.0169 (3)0.0087 (3)
Geometric parameters (Å, º) top
C1—N11.462 (2)C8—C91.382 (3)
C1—C41.509 (3)C8—H80.9300
C1—S11.836 (2)C9—H90.9300
C1—H10.9800C10—C151.378 (3)
C2—O11.216 (2)C10—C111.381 (3)
C2—N11.366 (3)C10—N11.436 (2)
C2—C31.502 (3)C11—C121.390 (3)
C3—S11.787 (2)C11—H110.9300
C3—H3A0.9700C12—C131.378 (3)
C3—H3B0.9700C12—H120.9300
C4—C91.378 (3)C13—C141.384 (3)
C4—C51.386 (3)C13—C161.516 (3)
C5—C61.376 (3)C14—C151.385 (3)
C5—H50.9300C14—H140.9300
C6—C71.376 (3)C15—H150.9300
C6—H60.9300C16—H16A0.9600
C7—C81.364 (3)C16—H16B0.9600
C7—Cl11.740 (2)C16—H16C0.9600
N1—C1—C4113.63 (15)C4—C9—H9119.7
N1—C1—S1105.19 (13)C8—C9—H9119.7
C4—C1—S1108.94 (14)C15—C10—C11119.55 (19)
N1—C1—H1109.6C15—C10—N1120.41 (18)
C4—C1—H1109.6C11—C10—N1120.04 (19)
S1—C1—H1109.6C10—C11—C12119.6 (2)
O1—C2—N1124.76 (19)C10—C11—H11120.2
O1—C2—C3122.66 (19)C12—C11—H11120.2
N1—C2—C3112.58 (19)C13—C12—C11121.6 (2)
C2—C3—S1108.30 (14)C13—C12—H12119.2
C2—C3—H3A110.0C11—C12—H12119.2
S1—C3—H3A110.0C12—C13—C14117.8 (2)
C2—C3—H3B110.0C12—C13—C16121.6 (2)
S1—C3—H3B110.0C14—C13—C16120.7 (3)
H3A—C3—H3B108.4C13—C14—C15121.4 (2)
C9—C4—C5118.47 (19)C13—C14—H14119.3
C9—C4—C1120.36 (19)C15—C14—H14119.3
C5—C4—C1121.12 (18)C10—C15—C14120.0 (2)
C6—C5—C4121.38 (19)C10—C15—H15120.0
C6—C5—H5119.3C14—C15—H15120.0
C4—C5—H5119.3C13—C16—H16A109.5
C5—C6—C7118.6 (2)C13—C16—H16B109.5
C5—C6—H6120.7H16A—C16—H16B109.5
C7—C6—H6120.7C13—C16—H16C109.5
C8—C7—C6121.4 (2)H16A—C16—H16C109.5
C8—C7—Cl1120.35 (17)H16B—C16—H16C109.5
C6—C7—Cl1118.25 (17)C2—N1—C10121.80 (17)
C7—C8—C9119.4 (2)C2—N1—C1118.11 (16)
C7—C8—H8120.3C10—N1—C1119.39 (15)
C9—C8—H8120.3C3—S1—C193.39 (9)
C4—C9—C8120.7 (2)

Experimental details

Crystal data
Chemical formulaC16H14ClNOS
Mr303.79
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.1591 (4), 13.0708 (4), 18.5125 (7)
V3)2942.18 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.85, 0.92
No. of measured, independent and
observed [I > 2˘I)] reflections
16959, 3377, 2205
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.02
No. of reflections3377
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This project was supported by Jiangsu Key Laboratory of the Chemistry of Low-Dimensional Materials.

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds