metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra(chlorido/iodido)(1,10-phenanthroline)platinum(IV) hemi[di(chlorine/iodine)]

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 14 February 2009; accepted 3 March 2009; online 11 March 2009)

The asymmetric unit of the title compound, [PtCl3.66I0.34(C12H8N2)]·0.5(Cl0.13I1.87), contains a neutral PtIV complex and one half of a halogen molecule. The PtIV ion is six-coordinated in a distorted octa­hedral environment by two N atoms of the 1,10-phenanthroline ligand and Cl or I atoms. The refinement of the structure and the EDX analysis indicate that the compound is a solid solution in which there is some substitution of Cl for I and vice versa. The chemical formula of the pure state of the compound would have been [PtCl4(C12H8N2)]·0.5I2. In the analysed crystal, two Cl atoms are partially (ca 25% and 9%) replaced by I atoms, and the I2 mol­ecule has a minor component modelled as ICl. As a result of the disorder, the different trans effects of the N and Cl/I atoms are not distinct. The complex displays inter­molecular ππ inter­actions between the six-membered rings, with a centroid–centroid distance of 3.771 (4) Å. There are also weak intra­molecular C—H⋯Cl hydrogen bonds.

Related literature

For details of some other Pt–phenanthroline complexes, see: Buse et al. (1977[Buse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem. 16, 1072-1076.]); Fanizzi et al. (1996[Fanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem. 35, 3173-3182.]); Kim et al. (2009a[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009a). Acta Cryst. E65, m224.],b[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009b). Acta Cryst. E65, m230.]). For related Pt–bipyridine complexes, see: Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]). For bond-length data, see: Orpen et al. (1989[Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]).

[Scheme 2]

Experimental

Crystal data
  • [PtCl3.66I0.34(C12H8N2)]·0.5(Cl0.13I1.87)

  • Mr = 669.26

  • Orthorhombic, P b c a

  • a = 14.215 (5) Å

  • b = 12.733 (5) Å

  • c = 17.575 (6) Å

  • V = 3180.8 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 11.92 mm−1

  • T = 293 K

  • 0.25 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.111, Tmax = 0.168

  • 17485 measured reflections

  • 3246 independent reflections

  • 2169 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.062

  • S = 0.86

  • 3246 reflections

  • 194 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2 0.93 2.73 3.320 (8) 122
C10—H10⋯Cl1 0.93 2.66 3.240 (7) 121

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound contains a neutral PtIV complex and one half-molecule of iodine which includes some Cl atoms (ca 6%). The PtIV ion is six-coordinated in a distorted octahedral environment by two N atoms of the 1,10-phenanthroline ligand and Cl or I atoms. The chemical formula of the pure state of the title compound would have been [PtCl4(C12H8N2)].0.5I2. In the particular crystal of the compound used, two Cl atoms (Cl3 and Cl4) are partially (ca 25% and 9%, respectively) displaced by the I atoms (I3 and I4) through the substitution reaction between the Cl- and I- ligand, and the I2 molecule also appears to have a minor component, that is I—Cl (Fig. 1 and 2). The chemical formula which resulted from the refinement of the structure was [PtCl3.66I0.34(C12H8N2)].0.5(Cl0.13I1.87), and in this case the ratio of the Cl atom to I atom is 2.91:1. An EDX analysis of the compound, however, gave a ratio of Cl:I = 2.47:1. Accordingly, the exact composition may very well be variable, and likely dependent on the exact conditions present during crystal formation. Even though these data are slightly different, they indicate clearly that the crystals are a solid solution in which there was some substitution of Cl for I and vice versa.

As a result of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom are in general slightly shorter than bond lengths to mutually trans Cl atoms (Kim et al. 2009a and 2009b). But the trans effects of the N and Cl/I atoms in the crystal are not distinct owing to the disordered atoms. The Pt—I distance is restrained to the value given in table 9.6.3.3 of the International Tables Vol. C (Orpen et al., 1989) (2.658 Å). The main contributor to the distortion from a true octahedral structure is the tight N1—Pt1—N2 chelate angle (81.3 (2)°), which result in non-linear trans axes (<Cl1—Pt1—N1 = 174.14 (16)° and <Cl2—Pt1—N2 = 175.97 (17)°). The complex displays intermolecular π-π interactions between the six-membered rings, with a shortest centroid-centroid distance of 3.771 (4) Å and with a dihedral angle between the ring planes of 2.1 (3)°. There are also weak intramolecular C—H···Cl hydrogen bonds (Table 1).

The iodine molecule was presumedly formed as a consequence of the oxidation of the iodide ion by the Pt4+ ion, and crystallized with the partially substituted complex. The bond distance between the I atoms is 2.708 (2) Å.

Related literature top

For details of some other Pt–phenanthroline complexes, see: Buse et al. (1977); Fanizzi et al. (1996); Kim et al. (2009a,b). For related Pt–bipyridine complexes, see: Hambley (1986); Hojjat Kashani et al. (2008). For bond-length data, see: Orpen et al. (1989).

Experimental top

To a solution of [PtCl4(C12H8N2)].H2O (0.0821 g, 0.153 mmol) in H2O (20 ml) was added KI (0.1318 g, 0.794 mmol), and stirred for 2 h at room temperature. The precipitate was separated by filtration and washed with water (20 ml) and MeOH (20 ml) and dried under vacuum, to give a dark brown powder (0.0846 g). Black crystals suitable for X-ray analysis were isolated from an acetone solution of the reaction products. EDX analysis (%atom): Cl 62.30%, I 25.18%, Pt 12.52%.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The disordered Cl5 atom was refined isotropically. Eight restraints instructions were used for the refinement using the following SHELXL97 (Sheldrick, 2008) commands: EADP Cl3 I3 and Cl4 I4, SIMU 0.010 I1 Cl5, BIND I1 Cl5a and Cl5 I1a, FREE Cl5 Cl5a, DFIX 2.658 0.010 Pt1 I3 and Pt1 I4.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The disordered structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms [Symmetry code: (a) 1 - x, 1 - y, -z]. The minor bonds are drawn with dashed lines.
[Figure 2] Fig. 2. View of a packing detail of the title compound. For the sake of clarity, only the major disorder component is shown.
Chloridoiodido(1,10-phenanthroline)platinum(IV) hemi[di(chloride/iodide)] top
Crystal data top
[PtCl3.66I0.34(C12H8N2)]·0.5(Cl0.13I1.87)F(000) = 2424
Mr = 669.26Dx = 2.795 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 973 reflections
a = 14.215 (5) Åθ = 2.4–24.5°
b = 12.733 (5) ŵ = 11.92 mm1
c = 17.575 (6) ÅT = 293 K
V = 3180.8 (19) Å3Plate, black
Z = 80.25 × 0.17 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3246 independent reflections
Radiation source: fine-focus sealed tube2169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1517
Tmin = 0.111, Tmax = 0.168k = 1015
17485 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0244P)2]
where P = (Fo2 + 2Fc2)/3
3246 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 1.29 e Å3
8 restraintsΔρmin = 0.50 e Å3
Crystal data top
[PtCl3.66I0.34(C12H8N2)]·0.5(Cl0.13I1.87)V = 3180.8 (19) Å3
Mr = 669.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.215 (5) ŵ = 11.92 mm1
b = 12.733 (5) ÅT = 293 K
c = 17.575 (6) Å0.25 × 0.17 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3246 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2169 reflections with I > 2σ(I)
Tmin = 0.111, Tmax = 0.168Rint = 0.049
17485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0318 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 0.86Δρmax = 1.29 e Å3
3246 reflectionsΔρmin = 0.50 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.134096 (18)0.30394 (2)0.177609 (15)0.03991 (10)
Cl10.17047 (13)0.14177 (15)0.22685 (10)0.0521 (5)
Cl20.28869 (12)0.36077 (15)0.19550 (10)0.0512 (5)
Cl30.0903 (14)0.3607 (17)0.2949 (8)0.0494 (13)0.746 (3)
I30.0759 (11)0.3695 (13)0.3094 (6)0.0494 (13)0.254 (3)
Cl40.1730 (7)0.2478 (8)0.0572 (3)0.0518 (8)0.913 (3)
I40.177 (2)0.238 (2)0.0398 (9)0.0518 (8)0.087 (3)
N10.0875 (4)0.4446 (4)0.1355 (3)0.0393 (14)
N20.0029 (4)0.2642 (4)0.1585 (3)0.0388 (13)
C10.1341 (5)0.5328 (6)0.1283 (4)0.0517 (19)
H10.19780.53410.14030.062*
C20.0911 (6)0.6243 (6)0.1031 (4)0.058 (2)
H20.12560.68630.09990.070*
C30.0015 (6)0.6235 (6)0.0831 (4)0.055 (2)
H30.03050.68460.06600.066*
C40.0535 (5)0.5285 (6)0.0887 (4)0.0438 (18)
C50.1496 (5)0.5174 (6)0.0688 (4)0.0484 (19)
H50.18200.57410.04810.058*
C60.1946 (5)0.4255 (6)0.0796 (4)0.050 (2)
H60.25810.42100.06720.061*
C70.1485 (5)0.3347 (5)0.1093 (4)0.0403 (17)
C80.1899 (5)0.2382 (6)0.1246 (4)0.052 (2)
H80.25340.22820.11410.062*
C90.1393 (5)0.1590 (6)0.1546 (4)0.0494 (19)
H90.16780.09470.16470.059*
C100.0446 (5)0.1735 (5)0.1703 (4)0.0447 (18)
H100.00980.11770.18970.054*
C110.0538 (5)0.3460 (6)0.1273 (4)0.0384 (17)
C120.0055 (5)0.4415 (5)0.1167 (3)0.0368 (16)
I10.56522 (7)0.45323 (7)0.04476 (5)0.0912 (4)0.936 (3)
Cl50.558 (3)0.496 (4)0.021 (2)0.062 (9)*0.064 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.04138 (16)0.03167 (16)0.04668 (17)0.00138 (13)0.00129 (14)0.00057 (14)
Cl10.0561 (11)0.0392 (11)0.0608 (12)0.0060 (9)0.0047 (9)0.0072 (9)
Cl20.0490 (11)0.0431 (12)0.0616 (12)0.0050 (9)0.0083 (9)0.0040 (9)
Cl30.064 (4)0.045 (3)0.039 (4)0.005 (2)0.007 (2)0.014 (3)
I30.064 (4)0.045 (3)0.039 (4)0.005 (2)0.007 (2)0.014 (3)
Cl40.0649 (15)0.052 (2)0.038 (3)0.0073 (14)0.006 (3)0.004 (2)
I40.0649 (15)0.052 (2)0.038 (3)0.0073 (14)0.006 (3)0.004 (2)
N10.044 (4)0.029 (4)0.045 (3)0.001 (3)0.001 (3)0.002 (3)
N20.037 (3)0.032 (3)0.046 (3)0.000 (3)0.005 (3)0.001 (3)
C10.053 (5)0.048 (5)0.055 (5)0.001 (4)0.002 (4)0.007 (4)
C20.057 (5)0.031 (5)0.086 (6)0.006 (4)0.009 (5)0.004 (4)
C30.071 (6)0.034 (5)0.060 (5)0.011 (4)0.003 (4)0.003 (4)
C40.052 (5)0.036 (5)0.043 (4)0.006 (4)0.007 (4)0.003 (3)
C50.050 (5)0.044 (5)0.051 (5)0.017 (4)0.006 (4)0.007 (4)
C60.045 (5)0.052 (6)0.054 (5)0.012 (4)0.006 (4)0.011 (4)
C70.044 (5)0.036 (4)0.041 (4)0.001 (3)0.002 (3)0.006 (3)
C80.046 (5)0.053 (5)0.056 (5)0.007 (4)0.006 (4)0.004 (4)
C90.047 (5)0.046 (5)0.055 (5)0.009 (4)0.007 (4)0.010 (4)
C100.050 (5)0.032 (5)0.052 (5)0.006 (3)0.002 (4)0.002 (3)
C110.040 (4)0.037 (4)0.038 (4)0.007 (3)0.008 (3)0.001 (3)
C120.042 (4)0.034 (4)0.034 (4)0.002 (3)0.004 (3)0.002 (3)
I10.1295 (7)0.0635 (6)0.0805 (6)0.0192 (5)0.0312 (5)0.0058 (4)
Geometric parameters (Å, º) top
Pt1—N22.040 (5)C4—C121.391 (9)
Pt1—N12.048 (5)C4—C51.417 (9)
Pt1—Cl32.272 (9)C5—C61.346 (9)
Pt1—Cl12.2977 (19)C5—H50.9300
Pt1—Cl42.301 (4)C6—C71.428 (9)
Pt1—Cl22.3347 (19)C6—H60.9300
Pt1—I32.598 (7)C7—C81.389 (9)
Pt1—I42.635 (9)C7—C111.391 (8)
N1—C11.309 (8)C8—C91.346 (10)
N1—C121.364 (8)C8—H80.9300
N2—C101.316 (8)C9—C101.387 (9)
N2—C111.381 (8)C9—H90.9300
C1—C21.388 (10)C10—H100.9300
C1—H10.9300C11—C121.408 (9)
C2—C31.364 (10)I1—Cl5i2.19 (4)
C2—H20.9300I1—I1i2.708 (2)
C3—C41.421 (10)Cl5—I1i2.19 (4)
C3—H30.9300
N2—Pt1—N181.3 (2)N1—C1—H1119.0
N2—Pt1—Cl388.1 (6)C2—C1—H1119.0
N1—Pt1—Cl387.8 (6)C3—C2—C1120.0 (7)
N2—Pt1—Cl193.11 (17)C3—C2—H2120.0
N1—Pt1—Cl1174.14 (16)C1—C2—H2120.0
Cl3—Pt1—Cl190.3 (6)C2—C3—C4119.4 (7)
N2—Pt1—Cl490.0 (3)C2—C3—H3120.3
N1—Pt1—Cl491.0 (3)C4—C3—H3120.3
Cl3—Pt1—Cl4177.9 (6)C12—C4—C5118.7 (7)
Cl1—Pt1—Cl490.8 (3)C12—C4—C3116.6 (7)
N2—Pt1—Cl2175.97 (17)C5—C4—C3124.7 (7)
N1—Pt1—Cl294.69 (16)C6—C5—C4120.7 (7)
Cl3—Pt1—Cl292.1 (5)C6—C5—H5119.7
Cl1—Pt1—Cl290.91 (7)C4—C5—H5119.7
Cl4—Pt1—Cl289.7 (3)C5—C6—C7122.5 (7)
N2—Pt1—I385.6 (4)C5—C6—H6118.8
N1—Pt1—I386.5 (4)C7—C6—H6118.8
Cl3—Pt1—I32.7 (9)C8—C7—C11117.2 (7)
Cl1—Pt1—I391.4 (4)C8—C7—C6126.4 (7)
Cl4—Pt1—I3175.2 (4)C11—C7—C6116.3 (6)
Cl2—Pt1—I394.6 (4)C9—C8—C7120.8 (7)
N2—Pt1—I489.4 (8)C9—C8—H8119.6
N1—Pt1—I491.3 (7)C7—C8—H8119.6
Cl3—Pt1—I4177.5 (9)C8—C9—C10119.8 (7)
Cl1—Pt1—I490.4 (7)C8—C9—H9120.1
Cl4—Pt1—I40.7 (10)C10—C9—H9120.1
Cl2—Pt1—I490.3 (7)N2—C10—C9121.5 (7)
I3—Pt1—I4174.8 (8)N2—C10—H10119.2
C1—N1—C12119.5 (6)C9—C10—H10119.2
C1—N1—Pt1128.4 (5)N2—C11—C7121.3 (6)
C12—N1—Pt1112.1 (4)N2—C11—C12116.6 (6)
C10—N2—C11119.3 (6)C7—C11—C12122.0 (6)
C10—N2—Pt1128.5 (5)N1—C12—C4122.5 (6)
C11—N2—Pt1112.2 (4)N1—C12—C11117.7 (6)
N1—C1—C2121.9 (7)C4—C12—C11119.7 (6)
N2—Pt1—N1—C1176.8 (6)C3—C4—C5—C6176.6 (7)
Cl3—Pt1—N1—C188.4 (8)C4—C5—C6—C71.6 (11)
Cl4—Pt1—N1—C193.3 (6)C5—C6—C7—C8177.6 (7)
Cl2—Pt1—N1—C13.6 (6)C5—C6—C7—C110.4 (10)
I3—Pt1—N1—C190.8 (7)C11—C7—C8—C91.1 (10)
I4—Pt1—N1—C193.9 (9)C6—C7—C8—C9178.3 (7)
N2—Pt1—N1—C120.2 (4)C7—C8—C9—C100.1 (11)
Cl3—Pt1—N1—C1288.7 (7)C11—N2—C10—C92.1 (9)
Cl4—Pt1—N1—C1289.7 (5)Pt1—N2—C10—C9179.7 (5)
Cl2—Pt1—N1—C12179.4 (4)C8—C9—C10—N21.7 (10)
I3—Pt1—N1—C1286.3 (5)C10—N2—C11—C70.9 (9)
I4—Pt1—N1—C1289.0 (8)Pt1—N2—C11—C7179.4 (5)
N1—Pt1—N2—C10179.6 (6)C10—N2—C11—C12179.4 (6)
Cl3—Pt1—N2—C1092.4 (8)Pt1—N2—C11—C122.1 (7)
Cl1—Pt1—N2—C102.2 (5)C8—C7—C11—N20.7 (9)
Cl4—Pt1—N2—C1088.6 (6)C6—C7—C11—N2178.2 (6)
I3—Pt1—N2—C1093.4 (7)C8—C7—C11—C12177.7 (6)
I4—Pt1—N2—C1088.2 (9)C6—C7—C11—C120.3 (9)
N1—Pt1—N2—C111.3 (4)C1—N1—C12—C41.0 (9)
Cl3—Pt1—N2—C1189.3 (7)Pt1—N1—C12—C4178.3 (5)
Cl1—Pt1—N2—C11179.5 (4)C1—N1—C12—C11178.2 (6)
Cl4—Pt1—N2—C1189.7 (5)Pt1—N1—C12—C110.9 (7)
I3—Pt1—N2—C1188.3 (6)C5—C4—C12—N1178.4 (6)
I4—Pt1—N2—C1190.1 (8)C3—C4—C12—N12.3 (9)
C12—N1—C1—C21.2 (10)C5—C4—C12—C112.4 (9)
Pt1—N1—C1—C2175.7 (5)C3—C4—C12—C11176.9 (6)
N1—C1—C2—C31.8 (11)N2—C11—C12—N12.0 (9)
C1—C2—C3—C40.4 (11)C7—C11—C12—N1179.5 (6)
C2—C3—C4—C121.6 (10)N2—C11—C12—C4177.2 (6)
C2—C3—C4—C5179.2 (7)C7—C11—C12—C41.3 (10)
C12—C4—C5—C62.6 (10)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.733.320 (8)122
C10—H10···Cl10.932.663.240 (7)121

Experimental details

Crystal data
Chemical formula[PtCl3.66I0.34(C12H8N2)]·0.5(Cl0.13I1.87)
Mr669.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.215 (5), 12.733 (5), 17.575 (6)
V3)3180.8 (19)
Z8
Radiation typeMo Kα
µ (mm1)11.92
Crystal size (mm)0.25 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.111, 0.168
No. of measured, independent and
observed [I > 2σ(I)] reflections
17485, 3246, 2169
Rint0.049
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.062, 0.86
No. of reflections3246
No. of parameters194
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.50

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.733.320 (8)121.7
C10—H10···Cl10.932.663.240 (7)120.9
 

Acknowledgements

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007-412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem. 16, 1072–1076.  CSD CrossRef CAS Web of Science Google Scholar
First citationFanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem. 35, 3173–3182.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009a). Acta Cryst. E65, m224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009b). Acta Cryst. E65, m230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOrpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds