organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3-amino­phen­yl)phosphine oxide ethanol solvate

aKey Laboratory of Mesoscopic Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and bJiangguantun Middle School, Liaocheng 252022, Shangdong Province, People's Republic of China
*Correspondence e-mail: jjl@nju.edu.cn

(Received 19 February 2009; accepted 12 March 2009; online 25 March 2009)

The title compound crystallized as an ethanol solvate, C18H18N3OP·C2H6O. It is the reduction product of tris­(3-nitro­phen­yl)phosphine oxide. In the crystal, there are inter­molecular N—H⋯O hydrogen bonds between neighbouring tris­(3-amino­phen­yl)phosphine oxide mol­ecules and O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecule.

Related literature

The structure of tris­(3-nitro­phen­yl)phosphine oxide is described by Jean-Noël et al. (2004[Jean-Noël, G., Fronczek, F. R. & Isovitsch, R. (2004). Acta Cryst. E60, o1646-o1647.]). For literature on related compounds, see: Michaelis et al. (1885[Michaelis, A., Michaelis, A. & von Soden, H. (1885). Liebigs Ann. Chem. 229, 295-334.]); Dressick et al. (2000[Dressick, W. J., George, C., Brandow, S. L., Schull, T. L. & Knight, D. A. (2000). J. Org. Chem. 65, 5059-5062.]); Hessler & Stelzer (1997[Hessler, A. & Stelzer, O. (1997). J. Org. Chem. 62, 2362-2369.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N3OP·C2H6O

  • Mr = 369.39

  • Triclinic, [P \overline 1]

  • a = 9.1046 (13) Å

  • b = 10.7595 (15) Å

  • c = 12.020 (3) Å

  • α = 109.131 (3)°

  • β = 94.245 (3)°

  • γ = 114.028 (2)°

  • V = 986.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.35 × 0.34 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.954

  • 5014 measured reflections

  • 3420 independent reflections

  • 1659 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.149

  • S = 0.85

  • 3420 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N1i 0.86 2.62 3.469 (6) 168
N2—H2B⋯O1ii 0.86 2.14 2.987 (4) 168
N2—H2C⋯O2iii 0.86 2.23 3.089 (5) 173
O2—H2⋯O1 0.82 1.85 2.672 (3) 178
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Arylphosphines have been investigated extensively as ionic ligands for catalytically active transition metals in aqueous solution (Hessler & Stelzer, 1997), as starting materials for the molecular fabrication of materials (Dressick et al., 2000) and so on. As early as 1885, tris(3-aminophenyl)phosphine oxide had been synthesized in the Sn/HCl system but with low yield (Michaelis et al., 1885). The molecules of the title compound crystallized as an ethanol solvate (Fig. 1). Adjacent molecules are linked via intermolecular O—H···O and N—H···O interactions, such as O2—H2···O1, N2—H2B···O1, N2—H2C···O2 and N1—H1A···O2 from a neighboring molecule (Fig. 2).

Related literature top

The structure of tris(3-nitrophenyl)phosphine oxide is described by Jean-Noël et al. (2004). For literature on related compounds, see: Michaelis et al. (1885); Dressick et al. (2000); Hessler & Stelzer (1997).

Experimental top

The precursor, tris(3-nitrophenyl)phosphine oxide (1.032 g, 2.5 mmol), was added to a mixture of ethanol (30 ml), THF (30 ml), hydrazine hydrate (10 ml) and a catalytic amount of Raney Ni in a 100 ml flask. The mixture was heated to reflux and reaction progress was monitored by TLC. The pure product was obtained as colorless crystals suitable for X-ray analysis after removing most of the solvent and without further purification (yield > 99%).

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C), (1.5Ueq(C) for methyl groups), and with a distance of O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O), and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N). Although the diffraction data were rather weak, the structure is unambiguous, nevertheless, the ethanol solvent molecule is rather poorly defined.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SMART (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis.
Tris(3-aminophenyl)phosphine oxide ethanol solvate top
Crystal data top
C18H18N3OP·C2H6OZ = 2
Mr = 369.39F(000) = 392
Triclinic, P1Dx = 1.244 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1046 (13) ÅCell parameters from 706 reflections
b = 10.7595 (15) Åθ = 2.6–19.5°
c = 12.020 (3) ŵ = 0.16 mm1
α = 109.131 (3)°T = 293 K
β = 94.245 (3)°Prism, colorless
γ = 114.028 (2)°0.35 × 0.34 × 0.30 mm
V = 986.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3420 independent reflections
Radiation source: fine-focus sealed tube1659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.947, Tmax = 0.954k = 1112
5014 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0599P)2]
where P = (Fo2 + 2Fc2)/3
3420 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C18H18N3OP·C2H6Oγ = 114.028 (2)°
Mr = 369.39V = 986.3 (3) Å3
Triclinic, P1Z = 2
a = 9.1046 (13) ÅMo Kα radiation
b = 10.7595 (15) ŵ = 0.16 mm1
c = 12.020 (3) ÅT = 293 K
α = 109.131 (3)°0.35 × 0.34 × 0.30 mm
β = 94.245 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3420 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1659 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.954Rint = 0.058
5014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 0.85Δρmax = 0.53 e Å3
3420 reflectionsΔρmin = 0.41 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.32847 (11)0.46681 (10)0.24048 (9)0.040
O10.2533 (3)0.4519 (2)0.3452 (2)0.048
O20.0137 (3)0.2243 (3)0.3724 (3)0.0692 (9)
H20.08790.29290.36320.104*
C120.5751 (4)0.7116 (4)0.2172 (3)0.0450 (9)
H120.61480.64750.17490.054*
C70.4373 (4)0.6580 (4)0.2618 (3)0.0398 (9)
C10.1745 (4)0.3739 (4)0.0993 (3)0.0430 (9)
C130.4720 (4)0.3909 (3)0.2210 (3)0.0380 (9)
C170.6849 (4)0.3539 (4)0.3165 (3)0.046
C110.6559 (4)0.8607 (4)0.2346 (3)0.049
C180.5679 (4)0.4064 (3)0.3238 (3)0.044
H180.55390.45280.39960.052*
N10.7909 (4)0.9160 (4)0.1905 (3)0.076
H1A0.83731.00810.20210.091*
H1B0.82980.85880.15100.091*
C140.4895 (4)0.3209 (4)0.1081 (3)0.048
H140.42430.30950.03870.058*
C160.7007 (4)0.2837 (4)0.2010 (3)0.052
H160.77760.24720.19310.062*
C60.0464 (4)0.2340 (4)0.0766 (3)0.0486 (10)
H60.04460.19080.13240.058*
C50.0779 (4)0.1596 (4)0.0291 (4)0.057
C20.1779 (5)0.4355 (4)0.0146 (4)0.0548 (11)
H2A0.26420.52770.02880.066*
C100.5934 (5)0.9530 (4)0.2983 (4)0.0592 (12)
H100.64571.05270.31110.071*
N20.7780 (4)0.3664 (4)0.4182 (3)0.0764 (11)
H2B0.76460.40740.48860.092*
H2C0.84970.33320.41160.092*
C90.4574 (5)0.9015 (4)0.3424 (4)0.0599 (11)
H90.41760.96570.38440.072*
C80.3784 (5)0.7539 (4)0.3248 (3)0.0534 (10)
H80.28570.71890.35530.064*
C150.6044 (4)0.2679 (4)0.0989 (3)0.056
H150.61700.22080.02280.068*
C30.0530 (5)0.3608 (5)0.0918 (4)0.0677 (13)
H30.05550.40270.14860.081*
N30.2044 (5)0.0239 (4)0.0519 (4)0.106
H3A0.20770.01640.00050.127*
H3B0.28110.02140.11780.127*
C40.0726 (5)0.2259 (5)0.1117 (4)0.0687 (13)
H40.15680.17680.18220.082*
C200.0756 (6)0.2038 (6)0.4755 (5)0.0963 (19)
H20A0.12650.29690.54580.116*
H20B0.01500.13280.49410.116*
C190.1946 (8)0.1515 (7)0.4477 (6)0.147 (3)
H19A0.14140.05550.38250.221*
H19B0.24260.14470.51800.221*
H19C0.28000.21890.42390.221*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0410.0390.0400.0170.0120.016
O10.0510.0500.0440.0210.0210.021
O20.0604 (18)0.062 (2)0.081 (2)0.0167 (15)0.0085 (17)0.0396 (17)
C120.050 (2)0.036 (2)0.042 (2)0.0173 (19)0.0080 (19)0.0098 (18)
C70.043 (2)0.037 (2)0.037 (2)0.0159 (18)0.0056 (18)0.0149 (18)
C10.043 (2)0.047 (2)0.041 (2)0.023 (2)0.0107 (18)0.0159 (19)
C130.041 (2)0.030 (2)0.039 (2)0.0122 (17)0.0108 (18)0.0129 (17)
C170.0540.0460.0400.0250.0120.016
C110.0490.0450.0420.0120.0070.019
C180.0490.0390.0420.0230.0130.011
N10.0820.0560.0780.0210.0310.024
C140.0610.0570.0400.0380.0160.021
C160.0560.0550.0560.0340.0210.024
C60.041 (2)0.048 (2)0.053 (3)0.018 (2)0.012 (2)0.019 (2)
C50.0380.0420.0670.0130.0070.001
C20.051 (2)0.058 (3)0.052 (3)0.021 (2)0.007 (2)0.022 (2)
C100.071 (3)0.038 (2)0.056 (3)0.017 (2)0.001 (2)0.017 (2)
N20.096 (3)0.104 (3)0.046 (2)0.076 (2)0.004 (2)0.014 (2)
C90.068 (3)0.049 (3)0.056 (3)0.030 (2)0.004 (2)0.011 (2)
C80.056 (2)0.048 (3)0.052 (3)0.024 (2)0.007 (2)0.016 (2)
C150.0730.0640.0420.0390.0200.021
C30.070 (3)0.071 (3)0.058 (3)0.033 (3)0.006 (3)0.023 (3)
N30.0890.0710.1100.0090.0090.020
C40.062 (3)0.076 (3)0.057 (3)0.035 (3)0.004 (2)0.013 (3)
C200.072 (3)0.072 (4)0.140 (6)0.024 (3)0.002 (4)0.054 (4)
C190.158 (6)0.134 (6)0.132 (6)0.039 (5)0.018 (5)0.077 (5)
Geometric parameters (Å, º) top
P1—O11.500 (2)C6—C51.385 (5)
P1—C131.794 (3)C6—H60.9300
P1—C71.799 (3)C5—N31.362 (5)
P1—C11.799 (4)C5—C41.393 (5)
O2—C201.441 (5)C2—C31.394 (5)
O2—H20.8200C2—H2A0.9300
C12—C71.381 (5)C10—C91.361 (5)
C12—C111.398 (5)C10—H100.9300
C12—H120.9300N2—H2B0.8600
C7—C81.388 (5)N2—H2C0.8600
C1—C21.381 (5)C9—C81.383 (5)
C1—C61.399 (5)C9—H90.9300
C13—C141.376 (5)C8—H80.9300
C13—C181.380 (4)C15—H150.9300
C17—N21.370 (4)C3—C41.361 (5)
C17—C181.390 (4)C3—H30.9300
C17—C161.396 (5)N3—H3A0.8600
C11—N11.362 (4)N3—H3B0.8600
C11—C101.387 (5)C4—H40.9300
C18—H180.9300C20—C191.424 (8)
N1—H1A0.8600C20—H20A0.9700
N1—H1B0.8600C20—H20B0.9700
C14—C151.377 (5)C19—H19A0.9600
C14—H140.9300C19—H19B0.9600
C16—C151.372 (5)C19—H19C0.9600
C16—H160.9300
O1—P1—C13112.04 (15)N3—C5—C4120.3 (4)
O1—P1—C7110.89 (16)C6—C5—C4119.1 (4)
C13—P1—C7107.89 (16)C1—C2—C3120.6 (4)
O1—P1—C1112.16 (15)C1—C2—H2A119.7
C13—P1—C1106.99 (16)C3—C2—H2A119.7
C7—P1—C1106.60 (16)C9—C10—C11121.7 (4)
C20—O2—H2109.5C9—C10—H10119.2
C7—C12—C11121.1 (4)C11—C10—H10119.2
C7—C12—H12119.5C17—N2—H2B120.0
C11—C12—H12119.5C17—N2—H2C120.0
C12—C7—C8119.3 (3)H2B—N2—H2C120.0
C12—C7—P1122.6 (3)C10—C9—C8120.1 (4)
C8—C7—P1118.1 (3)C10—C9—H9120.0
C2—C1—C6119.5 (3)C8—C9—H9120.0
C2—C1—P1122.8 (3)C9—C8—C7120.0 (4)
C6—C1—P1117.7 (3)C9—C8—H8120.0
C14—C13—C18120.2 (3)C7—C8—H8120.0
C14—C13—P1122.0 (3)C16—C15—C14120.6 (4)
C18—C13—P1117.8 (3)C16—C15—H15119.7
N2—C17—C18121.5 (3)C14—C15—H15119.7
N2—C17—C16121.0 (3)C4—C3—C2119.3 (4)
C18—C17—C16117.5 (3)C4—C3—H3120.4
N1—C11—C10120.0 (4)C2—C3—H3120.4
N1—C11—C12122.2 (4)C5—N3—H3A120.0
C10—C11—C12117.8 (4)C5—N3—H3B120.0
C13—C18—C17121.3 (3)H3A—N3—H3B120.0
C13—C18—H18119.4C3—C4—C5121.6 (4)
C17—C18—H18119.4C3—C4—H4119.2
C11—N1—H1A120.0C5—C4—H4119.2
C11—N1—H1B120.0C19—C20—O2109.0 (5)
H1A—N1—H1B120.0C19—C20—H20A109.9
C13—C14—C15119.4 (3)O2—C20—H20A109.9
C13—C14—H14120.3C19—C20—H20B109.9
C15—C14—H14120.3O2—C20—H20B109.9
C15—C16—C17121.0 (4)H20A—C20—H20B108.3
C15—C16—H16119.5C20—C19—H19A109.5
C17—C16—H16119.5C20—C19—H19B109.5
C5—C6—C1120.0 (4)H19A—C19—H19B109.5
C5—C6—H6120.0C20—C19—H19C109.5
C1—C6—H6120.0H19A—C19—H19C109.5
N3—C5—C6120.6 (4)H19B—C19—H19C109.5
C11—C12—C7—C80.0 (5)N2—C17—C18—C13178.7 (3)
C11—C12—C7—P1179.4 (3)C16—C17—C18—C130.6 (5)
O1—P1—C7—C12148.9 (3)C18—C13—C14—C150.6 (5)
C13—P1—C7—C1225.9 (3)P1—C13—C14—C15178.5 (3)
C1—P1—C7—C1288.7 (3)N2—C17—C16—C15178.3 (3)
O1—P1—C7—C831.7 (3)C18—C17—C16—C150.2 (5)
C13—P1—C7—C8154.7 (3)C2—C1—C6—C51.4 (5)
C1—P1—C7—C890.7 (3)P1—C1—C6—C5178.1 (3)
O1—P1—C1—C2137.1 (3)C1—C6—C5—N3179.3 (4)
C13—P1—C1—C299.7 (3)C1—C6—C5—C40.3 (6)
C7—P1—C1—C215.5 (4)C6—C1—C2—C31.4 (6)
O1—P1—C1—C642.5 (3)P1—C1—C2—C3178.1 (3)
C13—P1—C1—C680.8 (3)N1—C11—C10—C9179.1 (3)
C7—P1—C1—C6164.0 (3)C12—C11—C10—C90.3 (6)
O1—P1—C13—C14145.0 (3)C11—C10—C9—C80.4 (6)
C7—P1—C13—C1492.6 (3)C10—C9—C8—C70.2 (6)
C1—P1—C13—C1421.7 (3)C12—C7—C8—C90.0 (5)
O1—P1—C13—C1835.8 (3)P1—C7—C8—C9179.4 (3)
C7—P1—C13—C1886.5 (3)C17—C16—C15—C140.1 (6)
C1—P1—C13—C18159.2 (3)C13—C14—C15—C160.3 (5)
C7—C12—C11—N1179.3 (3)C1—C2—C3—C40.1 (6)
C7—C12—C11—C100.1 (5)C2—C3—C4—C51.0 (6)
C14—C13—C18—C170.8 (5)N3—C5—C4—C3179.5 (4)
P1—C13—C18—C17178.4 (3)C6—C5—C4—C31.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.623.469 (6)168
O2—H2···O10.821.852.672 (3)178
N2—H2B···O1ii0.862.142.987 (4)168
N2—H2C···O2iii0.862.233.089 (5)173
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18N3OP·C2H6O
Mr369.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.1046 (13), 10.7595 (15), 12.020 (3)
α, β, γ (°)109.131 (3), 94.245 (3), 114.028 (2)
V3)986.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.34 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.947, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
5014, 3420, 1659
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.149, 0.85
No. of reflections3420
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.41

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N1i0.862.623.469 (6)167.5
O2—H2···O10.821.852.672 (3)178.3
N2—H2B···O1ii0.862.142.987 (4)168.4
N2—H2C···O2iii0.862.233.089 (5)172.7
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the NSFC (grant No. 20602017), the Program for New Century Excellent Talents in University (grant No. NCET-07-0425) and the Natural Science Foundation of Jiangsu (grant No. BK 2008259).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDressick, W. J., George, C., Brandow, S. L., Schull, T. L. & Knight, D. A. (2000). J. Org. Chem. 65, 5059–5062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHessler, A. & Stelzer, O. (1997). J. Org. Chem. 62, 2362–2369.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJean-Noël, G., Fronczek, F. R. & Isovitsch, R. (2004). Acta Cryst. E60, o1646–o1647.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMichaelis, A., Michaelis, A. & von Soden, H. (1885). Liebigs Ann. Chem. 229, 295–334.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds