metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Dieth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}zinc(II) monohydrate

aDepartment of Chemistry, Shaoxing University, Shaoxing 312000, People's Republic of China, and bYancheng Institute of Technology, School of Chemical and Biological Engineering, Yancheng 224003, People's Republic of China
*Correspondence e-mail: chemreagent@yahoo.cn

(Received 28 February 2009; accepted 20 March 2009; online 25 March 2009)

The mol­ecule of the title compound, [Zn(C20H22N2O4)]·H2O, deviates from planarity with a dihedral angle between the two benzene rings is 18.3 (1)°. The four-coordinate ZnII ion has a distorted square-planar coordination and is N2O2-chelated by the Schiff base ligand. The ZnII ion and solvent water mol­ecule are located on a twofold rotation axis. The structure displays inter­molecular O—H⋯O hydrogen bonding.

Related literature

For the chemical properties of Schiff bases, see: Lindoy et al. (1976[Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724-1727.]). For N,N′-disalicylideneethyl­enediamine complexes, see: Correia et al. (2005[Correia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla F. (2005). Eur. J. Inorg. Chem. pp. 732-744.]); Cunningham et al. (2000[Cunningham, D., McArdle, P., Mitchell, M., Chonchubhair, N. N., Gara, M. O., Franceschi, F. & Floriani, C. (2000). Inorg. Chem. 39, 1639-1649.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C20H22N2O4)]·H2O

  • Mr = 437.78

  • Orthorhombic, P b c n

  • a = 12.6512 (16) Å

  • b = 19.986 (3) Å

  • c = 7.8708 (10) Å

  • V = 1990.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 273 K

  • 0.25 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.742, Tmax = 0.813

  • 9492 measured reflections

  • 1855 independent reflections

  • 1423 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.04

  • 1855 reflections

  • 133 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.807 (10) 2.91 (5) 3.071 (4) 94 (3)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

The schiff bases have been extensively studied as effective ligands for metal ions and used in the mechanism of many biochemical processes (Lindoy et al., 1976). N,N-disalicylideneethylenediamine type schiff bases ligands present versatile steric, electronic and lipophilic properties (Correia et al. 2005; Cunningham et al. 2000). We report here the synthesis and crystal structure of the title compound. The molecular structure is shown in Fig.1. The values of the geometric parameters in the structure are normal (Allen et al., 1987). The interplanar angles beween the the two phenyl group is 18.3 (1)°. The four-coordinate Zn gives plane coordination.

Related literature top

For the chemical properties of Schiff bases, see: Lindoy et al. (1976). For the N,N'-disalicylideneethylenediamine complexes, see: Correia et al. (2005); Cunningham et al. (2000). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 6,6'-Diethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (0.1 mmol) and zinc acetate (0.1 mmol) in absolute methanol (20 ml) was heated at 50 centidegree and stirred for 30 min, then filtered. The resulting clear orange solution was moved to a tube, some ethyl ether was added, and then after 14 days, block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained(yield: about 40%).

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C–H distances in the range of 0.93–0.97Å and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl). The coordinates of the water H atom were found in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
{6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}zinc(II) monohydrate top
Crystal data top
[Zn(C20H22N2O4)]·H2OF(000) = 912
Mr = 437.78Dx = 1.461 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2488 reflections
a = 12.6512 (16) Åθ = 3.3–24.0°
b = 19.986 (3) ŵ = 1.27 mm1
c = 7.8708 (10) ÅT = 273 K
V = 1990.1 (4) Å3Needle, colourless
Z = 40.25 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1855 independent reflections
Radiation source: fine-focus sealed tube1423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1513
Tmin = 0.742, Tmax = 0.813k = 2423
9492 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4077P]
where P = (Fo2 + 2Fc2)/3
1855 reflections(Δ/σ)max = 0.034
133 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
[Zn(C20H22N2O4)]·H2OV = 1990.1 (4) Å3
Mr = 437.78Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 12.6512 (16) ŵ = 1.27 mm1
b = 19.986 (3) ÅT = 273 K
c = 7.8708 (10) Å0.25 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1855 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1423 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.813Rint = 0.031
9492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
1855 reflectionsΔρmin = 0.46 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.475277 (19)0.25000.04314 (18)
O10.40642 (12)0.40659 (8)0.1698 (2)0.0441 (4)
O20.31927 (13)0.29902 (8)0.0342 (2)0.0491 (4)
O30.50000.26838 (19)0.25000.0940 (13)
N10.40920 (19)0.54832 (10)0.1725 (3)0.0519 (6)
C10.2641 (2)0.47896 (14)0.0770 (3)0.0530 (7)
C20.31464 (18)0.41541 (12)0.0957 (3)0.0422 (6)
C30.26222 (19)0.35776 (13)0.0260 (3)0.0468 (6)
C40.1632 (2)0.36235 (17)0.0434 (4)0.0619 (8)
H40.12940.32440.08490.074*
C50.1133 (2)0.4253 (2)0.0514 (4)0.0800 (10)
H50.04530.42840.09570.096*
C60.1628 (3)0.48188 (19)0.0045 (4)0.0740 (10)
H60.12890.52300.00550.089*
C70.3159 (2)0.54153 (14)0.1154 (4)0.0588 (8)
H70.27740.58050.09670.071*
C80.2840 (2)0.24216 (14)0.0638 (4)0.0590 (8)
H8A0.26830.25590.17920.071*
H8B0.22010.22380.01420.071*
C90.3688 (3)0.19045 (15)0.0647 (4)0.0726 (9)
H9A0.43200.20900.11300.109*
H9B0.34630.15280.13120.109*
H9C0.38270.17620.04960.109*
C100.4568 (3)0.61556 (13)0.1843 (4)0.0651 (8)
H10A0.40300.64790.21520.078*
H10B0.48570.62830.07480.078*
H3A0.487 (4)0.2934 (18)0.172 (4)0.126 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0450 (3)0.0357 (3)0.0487 (3)0.0000.00991 (18)0.000
O10.0357 (9)0.0407 (9)0.0558 (11)0.0034 (7)0.0043 (8)0.0012 (8)
O20.0455 (10)0.0505 (10)0.0513 (10)0.0085 (8)0.0114 (8)0.0028 (8)
O30.096 (3)0.054 (2)0.132 (4)0.0000.064 (3)0.000
N10.0604 (15)0.0394 (11)0.0558 (14)0.0128 (11)0.0222 (12)0.0062 (11)
C10.0456 (15)0.0639 (18)0.0496 (16)0.0188 (12)0.0072 (13)0.0064 (13)
C20.0342 (12)0.0563 (15)0.0361 (13)0.0052 (11)0.0062 (10)0.0073 (11)
C30.0378 (14)0.0650 (17)0.0376 (13)0.0001 (12)0.0031 (10)0.0109 (12)
C40.0378 (15)0.095 (2)0.0526 (17)0.0027 (15)0.0049 (12)0.0055 (16)
C50.0401 (17)0.126 (3)0.074 (2)0.0183 (19)0.0085 (15)0.012 (2)
C60.054 (2)0.091 (2)0.077 (2)0.0321 (17)0.0010 (15)0.011 (2)
C70.0645 (19)0.0545 (17)0.0575 (17)0.0282 (15)0.0164 (15)0.0095 (14)
C80.0666 (18)0.0623 (18)0.0481 (15)0.0252 (15)0.0096 (14)0.0051 (13)
C90.092 (2)0.0575 (18)0.068 (2)0.0142 (17)0.0122 (18)0.0091 (15)
C100.090 (2)0.0338 (14)0.071 (2)0.0088 (13)0.0375 (16)0.0048 (13)
Geometric parameters (Å, º) top
Zn1—O11.9195 (16)C4—C51.410 (5)
Zn1—O1i1.9195 (16)C4—H40.9300
Zn1—N1i1.955 (2)C5—C61.365 (5)
Zn1—N11.955 (2)C5—H50.9300
O1—C21.311 (3)C6—H60.9300
O2—C31.380 (3)C7—H70.9300
O2—C81.444 (3)C8—C91.489 (4)
O3—H3A0.807 (10)C8—H8A0.9700
N1—C71.270 (4)C8—H8B0.9700
N1—C101.476 (3)C9—H9A0.9600
C1—C61.404 (4)C9—H9B0.9600
C1—C21.429 (3)C9—H9C0.9600
C1—C71.444 (4)C10—C10i1.505 (7)
C2—C31.438 (3)C10—H10A0.9700
C3—C41.369 (4)C10—H10B0.9700
O1—Zn1—O1i88.69 (9)C4—C5—H5119.4
O1—Zn1—N1i177.35 (8)C5—C6—C1121.0 (3)
O1i—Zn1—N1i93.95 (9)C5—C6—H6119.5
O1—Zn1—N193.95 (9)C1—C6—H6119.5
O1i—Zn1—N1177.35 (8)N1—C7—C1126.1 (2)
N1i—Zn1—N183.40 (15)N1—C7—H7117.0
C2—O1—Zn1126.60 (15)C1—C7—H7117.0
C3—O2—C8118.9 (2)O2—C8—C9109.0 (2)
C7—N1—C10119.9 (2)O2—C8—H8A109.9
C7—N1—Zn1125.21 (19)C9—C8—H8A109.9
C10—N1—Zn1114.9 (2)O2—C8—H8B109.9
C6—C1—C2119.1 (3)C9—C8—H8B109.9
C6—C1—C7117.6 (3)H8A—C8—H8B108.3
C2—C1—C7123.0 (3)C8—C9—H9A109.5
O1—C2—C1124.1 (2)C8—C9—H9B109.5
O1—C2—C3118.0 (2)H9A—C9—H9B109.5
C1—C2—C3117.8 (2)C8—C9—H9C109.5
C4—C3—O2123.6 (3)H9A—C9—H9C109.5
C4—C3—C2121.3 (2)H9B—C9—H9C109.5
O2—C3—C2115.0 (2)N1—C10—C10i109.85 (18)
C3—C4—C5119.2 (3)N1—C10—H10A109.7
C3—C4—H4120.4C10i—C10—H10A109.7
C5—C4—H4120.4N1—C10—H10B109.7
C6—C5—C4121.3 (3)C10i—C10—H10B109.7
C6—C5—H5119.4H10A—C10—H10B108.2
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.81 (1)2.91 (5)3.071 (4)94 (3)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C20H22N2O4)]·H2O
Mr437.78
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)273
a, b, c (Å)12.6512 (16), 19.986 (3), 7.8708 (10)
V3)1990.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.25 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.742, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
9492, 1855, 1423
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.04
No. of reflections1855
No. of parameters133
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.807 (10)2.91 (5)3.071 (4)94 (3)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation (Y4080395).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorreia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla F. (2005). Eur. J. Inorg. Chem. pp. 732–744.  Web of Science CSD CrossRef Google Scholar
First citationCunningham, D., McArdle, P., Mitchell, M., Chonchubhair, N. N., Gara, M. O., Franceschi, F. & Floriani, C. (2000). Inorg. Chem. 39, 1639–1649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724–1727.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds