metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethylenedi­amine)cobalt(II) bis­(tetra­hydroxypentaborate) dihydrate

aDepartment of Chemistry, Jining Normal College, Wulanchabu, Inner Mongolia, 012000, People's Republic of China
*Correspondence e-mail: lipingchem@hotmail.com

(Received 13 February 2009; accepted 27 February 2009; online 6 March 2009)

The novel pentaborate with a transition-metal complex as counter-cation and with water of crystallization, tris(ethylenediamine)cobalt(II) bis[4,4′,6,6′-tetrahydroxy-2,2′-spirobi(cyclotriboroxane)(1−)] dihydrate, [Co(C2H8N2)3][B5O6(OH)4]2·2H2O, forms a three-dimensional supra­molecular framework through O—H⋯O hydrogen bonding among the [B5O6(OH)4] anions with large channels along the a axis in which the templating [Co(en)3]2+ cations (en = ethylenediamine) and water mol­ecules are located. The crystal packing is consolidated by additional O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Liu et al. (2006[Liu, Z. H., Zhang, J. J. & Zhang, W. J. (2006). Inorg. Chim. Acta. 359, 519-524.]); Sung et al. (2000[Sung, H. H. Y., Wu, M. M. & Williams, I. D. (2000). Inorg. Chem. Commun. 3, 401-404.]); Touboul et al. (2003[Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.]); Wang et al. (2005[Wang, G. M., Sun, Y. Q. & Yang, G. Y. (2005). J. Solid State Chem. 178, 729-735.], 2006[Wang, G. M., Sun, Y. Q. & Yang, G. Y. (2006). J. Solid State Chem. 179, 1545-1553.]); Zhang et al. (2004[Zhang, H.-X., Zheng, S.-T. & Yang, G.-Y. (2004). Acta Cryst. C60, m241-m243.]). For background to the applications of borate compounds, see: Becker (1998[Becker, P. (1998). Adv. Mater. 10, 979--992.]). For related literature, see: Li et al. (1995[Li, J., Xia, S. P. & Gao, S. Y. (1995). Spectrochim. Acta. 51A, 519-532.], 2007[Li, H. J., Liu, Z. H. & Sun, L. M. (2007). Chin. J. Chem. 25, 1131-1134.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3][B5O6(OH)4]2·2H2O

  • Mr = 711.44

  • Monoclinic, P 21 /c

  • a = 8.504 (4) Å

  • b = 23.127 (10) Å

  • c = 15.306 (7) Å

  • β = 93.549 (7)°

  • V = 3004 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.50 × 0.47 × 0.29 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.732, Tmax = 0.830

  • 15470 measured reflections

  • 5252 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.232

  • S = 1.02

  • 5252 reflections

  • 406 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 1.68 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O15i 0.90 2.36 3.188 (7) 154
N1—H1A⋯O19i 0.90 2.64 3.425 (7) 147
N1—H1B⋯O11ii 0.90 2.38 3.276 (7) 174
N2—H2A⋯O8iii 0.90 2.23 3.089 (7) 159
N2—H2B⋯O21iv 0.90 2.18 3.030 (10) 157
N3—H3A⋯O2iii 0.90 2.23 3.074 (7) 157
N4—H4A⋯O20i 0.90 2.49 3.199 (7) 136
N5—H5B⋯O7iii 0.90 2.34 3.085 (7) 140
N6—H6A⋯O20i 0.90 2.42 3.302 (7) 168
N6—H6B⋯O22iv 0.90 2.38 3.235 (12) 158
O7—H7⋯O16v 0.82 1.84 2.647 (5) 170
O8—H8⋯O3iii 0.82 1.87 2.687 (5) 170
O10—H10⋯O13vi 0.82 1.94 2.753 (6) 172
O18—H18⋯O6vii 0.82 1.88 2.687 (6) 170
O19—H19⋯O14i 0.82 1.89 2.691 (5) 164
O20—H20⋯O1viii 0.82 1.91 2.725 (5) 170
O22—H3⋯O19ix 0.85 2.45 2.993 (11) 122
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z; (vii) x+1, y, z; (viii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) x-1, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interest in borate compounds has been steadily growing because of their rich structural chemistry and interesting physical properties, such as nonlinear optical behavior for β-BaB2O4 (BBO) and CsB3O5(CBO). To date, various metal borate systems including alkali metals, alkaline earth metals, rare earth and transition metals have been extensively studied. In contrast, the transition-metal complex templated borates are less explored. Only few such compounds such as [Cu(en)2][B7O13H3]n (Sung et al., 2000), [Mn(C10H28N6)][B5O6(OH)4]2 (Zhang et al., 2004), [Zn(DIEN)2][B5O6(OH)4]2, [B5O7(OH)3Zn(TREN)](Wang et al., 2005), [Co(DIEN)2][B5O6(OH)4]2, [B5O7(OH)3Co(TREN)], [Co2(TETA)3][B5O6(OH)4]4(Wang, et al., 2006), and [Ni(C4H10N2)(C2H8N2)2][B5O6(OH)4]2 (Liu et al., 2006), have been reported. Many of such compounds were pentaborates and did not contain any crystalline water. In this work, we report the synthesis and structure of a novel hydrated borate, [Co(en)3][B5O6(OH)4]2.2H2O.

Single crystal X-ray analysis reveals that the title complex consists of one [Co(en)3]2+, two [B5O6(OH)4]- polyborate anions and two lattice water molecules as shown in Figure 1. The Co2+ ion is bonded to six N atoms of three ligands of ethylenediamine molecules forming an octahedron. The Co—N distances range from 2.139 (6) to 0.2241 (6) Å and the N—Co—N angles are between 77.9 (2)-97.6 (2) and 165.1 (2)-172.7 (2)°. The isolated pentaborate anion is characterized by two B3O3 rings that are linked by one common BO4 tetrahedron. Each ring is formed by two BO3 triangles and one slightly distorted common BO4 tetrahedron. The terminal oxygen atoms are protonated. The bond distances B—O and bond angles O—B—O involving the tetrahedral B atoms (B1 and B6) range from 1.451 (8) to 1.488 (7) Å, and 107.5 (4) to 111.6 (4)°, respectively; the corresponding molecular dimensions for the trigonal B atoms (B2-B5 and B7-B10) are 1.347 (7)-1.385 (7) Å and 115.4 (4)–123.7 (5)°. The isolated pentaborate polyanion [B5O6(OH)4]- is also present in some alkali metal hydrated borates, such as M[B5O6(OH)4] 2H2O (M = K, Rb, Cs, NH4+) (Touboul et al., 2003).

The [B5O6(OH)4]- anions are further connected through O—H···O hydrogen-bonding interactions of the hydroxyl groups with the bridged-oxygen atoms or the hydroxyl groups from other [B5O6(OH)4]- anions, forming a three-dimensional framework with channels along the a & c-axes. Especially, there are large channels containing a 12-membered boron rings along the a-axis, between which [Co(en)3]2+ cations and lattice water molecules are intercalated (Fig. 2). The [Co(en)3]2+ cations and lattice water molecules are located in the inorganic channels and interact with the polyborate framework both electrostatically and via hydrogen bonds N—H···O, with N···O distances in the range 3.030 (10) - 3.425 (7) Å. In addition, the H2O molecules interact not only with [Co(en)3]2+ cations through N—H···O but also with [B5O6(OH)4]- anions through O—H···O; details of hydrogen bonds have been provided in Table 1.

The complex is a new pentaborate and features a three-dimensional supramolecular framework with large channels along the a-axes through O—H···O hydrogen-bonding among the [B5O6(OH)4]- anions. These results enrich the field of structural chemistry of borates.

Related literature top

For related structures, see: Liu et al. (2006); Sung et al. (2000); Touboul et al. (2003); Wang et al. (2005, 2006); Zhang et al. (2004). For related literature, see: Li et al. (1995, 2007). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

All regents used in the synthesis were analytic grade and were used without further purification. A mixture of CoSO4 7H2O (0.7028 g), H3BO3 (1.3724 g) and ethylenediamine (8.5 mL) was sealed in a 25 mL Teflon-lined stainless steel autoclave, and heated at 447 K for 7 days under autogenous pressure, then cooled to room temperature. The resulting orange columnar crystals suitable for single-crystal X-ray diffraction were obtained.

Refinement top

H atoms were positioned geometrically, and were placed in calculated positions in riding mode with hydroxy O–H = 0.82, water of crystallization O–H = 0.085 (using DFIX commands), amine N–H = 0.90 and methylene C–H = 0.97 Å and isotropic Uiso = 1.5Ueq(hydroxy O) and 1.2Ueq(the rest of the parent atoms). The final difference map showed residual electron density in the close proximity of Co-atom and was essentially meaningless.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit structure of [Co(en)3][B5O6(OH)4]2 . 2 H2O. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View along axis a of [Co(en)3][B5O6(OH)4]2 . 2 H2O, showing 12 - membered boron rings constructed by O—H···O hydrogen bonds.
Tris(ethylenediamine)cobalt(II) bis(tetrahydroxypentaborate) dihydrate top
Crystal data top
[Co(C2H8N2)3][B5O6(OH)4]2·2H2OF(000) = 1468
Mr = 711.44Dx = 1.573 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2705 reflections
a = 8.504 (4) Åθ = 2.2–23.6°
b = 23.127 (10) ŵ = 0.67 mm1
c = 15.306 (7) ÅT = 293 K
β = 93.549 (7)°Columnar, orange
V = 3004 (2) Å30.50 × 0.47 × 0.29 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5252 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
SADABS (Bruker, 2001)
h = 810
Tmin = 0.732, Tmax = 0.830k = 2727
15470 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1233P)2 + 1.7881P]
where P = (Fo2 + 2Fc2)/3
5252 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 1.68 e Å3
9 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Co(C2H8N2)3][B5O6(OH)4]2·2H2OV = 3004 (2) Å3
Mr = 711.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.504 (4) ŵ = 0.67 mm1
b = 23.127 (10) ÅT = 293 K
c = 15.306 (7) Å0.50 × 0.47 × 0.29 mm
β = 93.549 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5252 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2001)
2809 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.830Rint = 0.054
15470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0719 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.02Δρmax = 1.68 e Å3
5252 reflectionsΔρmin = 0.70 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.43617 (9)0.63869 (4)0.77983 (5)0.0537 (3)
B10.1368 (7)0.3764 (3)0.5439 (4)0.0351 (15)
B20.0462 (7)0.3228 (3)0.4381 (4)0.0362 (14)
B30.0621 (8)0.4253 (3)0.4431 (4)0.0454 (17)
B40.4227 (8)0.3736 (3)0.5801 (4)0.0438 (17)
B50.2513 (7)0.3623 (3)0.6949 (4)0.0417 (16)
B60.9279 (7)0.3764 (2)0.9264 (4)0.0354 (15)
B70.6432 (8)0.3663 (3)0.8895 (4)0.0427 (16)
B80.8133 (8)0.3742 (3)0.7739 (4)0.0456 (17)
B91.1260 (8)0.4291 (3)1.0232 (4)0.0440 (17)
B101.1424 (8)0.3266 (3)1.0171 (4)0.0386 (15)
N10.4478 (7)0.5823 (3)0.8935 (3)0.0678 (16)
H1A0.54700.58140.91760.081*
H1B0.38460.59600.93370.081*
N20.4191 (7)0.5563 (3)0.7164 (4)0.0756 (18)
H2A0.32130.55140.69150.091*
H2B0.48780.55450.67410.091*
N30.1854 (6)0.6528 (3)0.7892 (4)0.0673 (16)
H3A0.13590.64980.73570.081*
H3B0.14620.62550.82370.081*
N40.4324 (7)0.7182 (3)0.8632 (4)0.084 (2)
H4A0.49610.71310.91180.100*
H4B0.46890.74850.83360.100*
N50.4420 (6)0.6870 (3)0.6575 (4)0.0741 (18)
H5A0.42420.66280.61190.089*
H5B0.36570.71400.65500.089*
N60.6878 (6)0.6488 (3)0.7685 (4)0.0733 (18)
H6A0.72900.66920.81450.088*
H6B0.73390.61370.76970.088*
O10.0701 (4)0.32294 (14)0.5030 (2)0.0375 (9)
O20.1085 (5)0.37366 (15)0.4055 (3)0.0552 (12)
O30.0455 (4)0.42693 (14)0.5118 (2)0.0400 (9)
O40.3000 (4)0.38294 (16)0.5216 (2)0.0426 (10)
O50.4009 (4)0.3580 (2)0.6644 (2)0.0558 (12)
O60.1250 (4)0.37288 (15)0.6392 (2)0.0373 (9)
O70.1035 (5)0.27447 (15)0.3988 (3)0.0503 (11)
H70.05740.24620.42020.075*
O80.1303 (6)0.47363 (17)0.4077 (3)0.0774 (17)
H80.09420.50220.43360.116*
O90.5727 (5)0.3794 (2)0.5539 (3)0.0638 (13)
H90.63590.37230.59510.096*
O100.2410 (5)0.3565 (2)0.7824 (2)0.0609 (13)
H100.14890.36000.79440.091*
O110.7650 (4)0.37226 (15)0.9490 (2)0.0409 (9)
O120.6659 (5)0.3664 (2)0.8021 (3)0.0683 (15)
O130.9406 (4)0.37903 (14)0.8307 (2)0.0377 (9)
O140.9985 (4)0.42903 (14)0.9664 (2)0.0399 (9)
O151.2021 (5)0.37858 (15)1.0477 (3)0.0507 (11)
O161.0164 (4)0.32445 (15)0.9591 (2)0.0407 (10)
O170.4946 (4)0.36107 (19)0.9168 (3)0.0580 (12)
H170.43190.35790.87420.087*
O180.8250 (5)0.3745 (2)0.6850 (2)0.0691 (15)
H180.91780.37790.67400.104*
O191.1888 (5)0.47805 (17)1.0601 (3)0.0717 (15)
H191.13760.50611.04220.108*
O201.2153 (4)0.27831 (15)1.0506 (2)0.0466 (10)
H201.17090.24951.03000.070*
O210.3273 (11)0.4825 (3)0.4013 (6)0.177 (4)
H10.37140.45380.42740.213*
H20.23900.48100.42430.213*
O220.0595 (11)0.4556 (4)0.2344 (6)0.202 (4)
H30.12110.48020.21340.243*
H40.00110.47380.26700.243*
C10.3987 (12)0.5242 (4)0.8680 (5)0.097 (3)
H1C0.28470.52150.86620.117*
H1D0.44180.49660.91070.117*
C20.4543 (13)0.5106 (4)0.7813 (6)0.109 (3)
H2C0.56730.50430.78690.131*
H2D0.40540.47490.76040.131*
C30.1559 (10)0.7101 (4)0.8256 (6)0.103 (3)
H3C0.14260.73770.77800.124*
H3D0.05830.70900.85520.124*
C40.2810 (9)0.7299 (3)0.8866 (6)0.083 (2)
H4C0.27040.77130.89370.100*
H4D0.26700.71220.94300.100*
C50.5921 (9)0.7141 (4)0.6522 (5)0.078 (2)
H5C0.59250.75040.68390.094*
H5D0.60860.72270.59140.094*
C60.7205 (9)0.6782 (5)0.6879 (5)0.105 (3)
H6C0.74480.64950.64450.126*
H6D0.81320.70220.69860.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0375 (5)0.0835 (7)0.0385 (5)0.0089 (4)0.0091 (3)0.0043 (4)
B10.035 (3)0.035 (4)0.034 (3)0.001 (3)0.013 (3)0.000 (3)
B20.039 (3)0.035 (4)0.034 (3)0.001 (3)0.008 (3)0.001 (3)
B30.051 (4)0.035 (4)0.048 (4)0.005 (3)0.024 (3)0.006 (3)
B40.035 (4)0.057 (5)0.038 (4)0.000 (3)0.005 (3)0.004 (3)
B50.033 (3)0.060 (4)0.031 (3)0.004 (3)0.009 (3)0.003 (3)
B60.040 (4)0.031 (4)0.032 (3)0.002 (3)0.018 (3)0.002 (2)
B70.043 (4)0.048 (4)0.036 (4)0.002 (3)0.008 (3)0.000 (3)
B80.035 (4)0.063 (5)0.036 (4)0.006 (3)0.011 (3)0.002 (3)
B90.043 (4)0.034 (4)0.051 (4)0.003 (3)0.023 (3)0.006 (3)
B100.044 (4)0.032 (4)0.038 (3)0.004 (3)0.007 (3)0.003 (3)
N10.060 (4)0.088 (5)0.055 (3)0.001 (3)0.009 (3)0.003 (3)
N20.079 (4)0.095 (5)0.051 (3)0.008 (4)0.007 (3)0.015 (3)
N30.053 (3)0.086 (4)0.062 (4)0.006 (3)0.001 (3)0.000 (3)
N40.069 (4)0.108 (5)0.074 (4)0.009 (4)0.005 (3)0.029 (4)
N50.052 (4)0.108 (5)0.061 (4)0.001 (3)0.002 (3)0.016 (3)
N60.046 (3)0.125 (5)0.048 (3)0.002 (3)0.007 (3)0.002 (3)
O10.041 (2)0.031 (2)0.039 (2)0.0017 (16)0.0158 (17)0.0017 (16)
O20.065 (3)0.036 (2)0.059 (3)0.0065 (19)0.043 (2)0.0046 (19)
O30.044 (2)0.032 (2)0.041 (2)0.0039 (17)0.0202 (17)0.0004 (16)
O40.035 (2)0.057 (3)0.034 (2)0.0018 (18)0.0074 (17)0.0067 (17)
O50.031 (2)0.103 (3)0.033 (2)0.011 (2)0.0068 (17)0.008 (2)
O60.0293 (19)0.048 (2)0.033 (2)0.0043 (16)0.0077 (15)0.0029 (16)
O70.058 (2)0.027 (2)0.061 (3)0.0002 (18)0.033 (2)0.0043 (18)
O80.103 (4)0.031 (2)0.088 (3)0.012 (2)0.072 (3)0.006 (2)
O90.035 (2)0.111 (4)0.045 (3)0.001 (2)0.0018 (19)0.007 (2)
O100.033 (2)0.121 (4)0.027 (2)0.007 (2)0.0088 (16)0.004 (2)
O110.041 (2)0.051 (2)0.030 (2)0.0008 (17)0.0092 (17)0.0005 (16)
O120.033 (2)0.142 (5)0.029 (2)0.002 (2)0.0065 (18)0.008 (2)
O130.035 (2)0.044 (2)0.033 (2)0.0007 (16)0.0104 (16)0.0009 (16)
O140.045 (2)0.029 (2)0.043 (2)0.0052 (17)0.0198 (17)0.0065 (16)
O150.050 (2)0.033 (2)0.064 (3)0.0054 (18)0.034 (2)0.0065 (18)
O160.044 (2)0.029 (2)0.046 (2)0.0010 (16)0.0230 (18)0.0024 (16)
O170.034 (2)0.102 (4)0.038 (2)0.013 (2)0.0004 (18)0.003 (2)
O180.031 (2)0.146 (5)0.029 (2)0.001 (2)0.0071 (17)0.002 (2)
O190.075 (3)0.033 (2)0.099 (4)0.006 (2)0.056 (3)0.013 (2)
O200.046 (2)0.034 (2)0.055 (2)0.0063 (17)0.0273 (19)0.0023 (18)
O210.229 (10)0.141 (7)0.173 (8)0.035 (6)0.103 (7)0.032 (6)
O220.230 (8)0.187 (7)0.200 (7)0.038 (6)0.088 (6)0.015 (6)
C10.136 (8)0.084 (7)0.071 (6)0.001 (6)0.006 (5)0.011 (5)
C20.161 (10)0.066 (6)0.099 (7)0.003 (6)0.012 (7)0.001 (5)
C30.080 (6)0.143 (9)0.087 (6)0.024 (6)0.007 (5)0.025 (6)
C40.079 (6)0.068 (5)0.103 (6)0.000 (4)0.005 (5)0.003 (5)
C50.077 (5)0.097 (6)0.061 (5)0.022 (5)0.003 (4)0.009 (4)
C60.058 (5)0.184 (11)0.072 (6)0.014 (6)0.005 (4)0.011 (6)
Geometric parameters (Å, º) top
Co1—N22.139 (6)N2—H2A0.9000
Co1—N62.170 (6)N2—H2B0.9000
Co1—N32.171 (6)N3—C31.465 (10)
Co1—N12.172 (6)N3—H3A0.9000
Co1—N52.183 (5)N3—H3B0.9000
Co1—N42.241 (6)N4—C41.384 (9)
B1—O41.457 (7)N4—H4A0.9000
B1—O61.470 (7)N4—H4B0.9000
B1—O31.471 (7)N5—C51.429 (9)
B1—O11.483 (7)N5—H5A0.9000
B2—O71.347 (7)N5—H5B0.9000
B2—O11.357 (6)N6—C61.451 (10)
B2—O21.370 (7)N6—H6A0.9000
B3—O31.351 (6)N6—H6B0.9000
B3—O81.356 (7)O7—H70.8200
B3—O21.373 (7)O8—H80.8200
B4—O41.350 (7)O9—H90.8200
B4—O51.363 (8)O10—H100.8200
B4—O91.367 (8)O17—H170.8200
B5—O61.352 (7)O18—H180.8200
B5—O101.355 (7)O19—H190.8200
B5—O51.385 (8)O20—H200.8200
B6—O111.451 (8)O21—H10.8502
B6—O141.473 (6)O21—H20.8503
B6—O131.478 (7)O22—H30.8499
B6—O161.488 (7)O22—H40.8501
B7—O111.344 (7)C1—C21.470 (10)
B7—O171.361 (8)C1—H1C0.9700
B7—O121.364 (8)C1—H1D0.9700
B8—O131.350 (7)C2—H2C0.9700
B8—O121.363 (8)C2—H2D0.9700
B8—O181.371 (8)C3—C41.445 (10)
B9—O141.347 (6)C3—H3C0.9700
B9—O191.359 (7)C3—H3D0.9700
B9—O151.377 (7)C4—H4C0.9700
B10—O161.349 (7)C4—H4D0.9700
B10—O201.362 (7)C5—C61.452 (10)
B10—O151.376 (7)C5—H5C0.9700
N1—C11.452 (10)C5—H5D0.9700
N1—H1A0.9000C6—H6C0.9700
N1—H1B0.9000C6—H6D0.9700
N2—C21.470 (10)
N2—Co1—N695.7 (3)Co1—N4—H4B109.5
N2—Co1—N397.2 (2)H4A—N4—H4B108.1
N6—Co1—N3165.1 (3)C5—N5—Co1110.0 (4)
N2—Co1—N180.0 (2)C5—N5—H5A109.7
N6—Co1—N197.6 (2)Co1—N5—H5A109.7
N3—Co1—N191.9 (2)C5—N5—H5B109.7
N2—Co1—N594.0 (2)Co1—N5—H5B109.7
N6—Co1—N578.6 (2)H5A—N5—H5B108.2
N3—Co1—N593.1 (2)C6—N6—Co1111.1 (4)
N1—Co1—N5172.7 (2)C6—N6—H6A109.4
N2—Co1—N4170.7 (2)Co1—N6—H6A109.4
N6—Co1—N490.3 (2)C6—N6—H6B109.4
N3—Co1—N477.9 (2)Co1—N6—H6B109.4
N1—Co1—N492.2 (2)H6A—N6—H6B108.0
N5—Co1—N494.1 (3)B2—O1—B1123.6 (4)
O4—B1—O6111.3 (4)B2—O2—B3120.0 (4)
O4—B1—O3109.2 (4)B3—O3—B1123.8 (4)
O6—B1—O3108.0 (4)B4—O4—B1122.4 (5)
O4—B1—O1109.4 (5)B4—O5—B5118.7 (5)
O6—B1—O1109.0 (4)B5—O6—B1122.3 (5)
O3—B1—O1109.9 (4)B2—O7—H7109.5
O7—B2—O1123.7 (5)B3—O8—H8109.5
O7—B2—O2115.4 (4)B4—O9—H9109.5
O1—B2—O2120.8 (5)B5—O10—H10109.5
O3—B3—O8122.7 (5)B7—O11—B6123.5 (5)
O3—B3—O2120.9 (5)B8—O12—B7120.0 (5)
O8—B3—O2116.4 (4)B8—O13—B6122.0 (5)
O4—B4—O5121.7 (6)B9—O14—B6124.1 (4)
O4—B4—O9119.1 (6)B10—O15—B9119.4 (4)
O5—B4—O9119.2 (5)B10—O16—B6123.8 (4)
O6—B5—O10122.9 (5)B7—O17—H17109.5
O6—B5—O5120.8 (5)B8—O18—H18109.5
O10—B5—O5116.3 (5)B9—O19—H19109.5
O11—B6—O14109.0 (5)B10—O20—H20109.5
O11—B6—O13111.6 (4)H2—O21—H198.5
O14—B6—O13109.0 (4)H3—O22—H4107.6
O11—B6—O16109.7 (5)N1—C1—C2109.7 (7)
O14—B6—O16110.0 (4)N1—C1—H1C109.7
O13—B6—O16107.5 (4)C2—C1—H1C109.7
O11—B7—O17119.5 (5)N1—C1—H1D109.7
O11—B7—O12121.0 (6)C2—C1—H1D109.7
O17—B7—O12119.5 (5)H1C—C1—H1D108.2
O13—B8—O12121.6 (6)N2—C2—C1113.1 (7)
O13—B8—O18122.3 (6)N2—C2—H2C109.0
O12—B8—O18116.1 (5)C1—C2—H2C109.0
O14—B9—O19123.4 (5)N2—C2—H2D109.0
O14—B9—O15121.4 (5)C1—C2—H2D109.0
O19—B9—O15115.3 (4)H2C—C2—H2D107.8
O16—B10—O20122.8 (5)C4—C3—N3113.3 (7)
O16—B10—O15121.1 (5)C4—C3—H3C108.9
O20—B10—O15116.0 (5)N3—C3—H3C108.9
C1—N1—Co1110.0 (4)C4—C3—H3D108.9
C1—N1—H1A109.7N3—C3—H3D108.9
Co1—N1—H1A109.7H3C—C3—H3D107.7
C1—N1—H1B109.7N4—C4—C3115.5 (7)
Co1—N1—H1B109.7N4—C4—H4C108.4
H1A—N1—H1B108.2C3—C4—H4C108.4
C2—N2—Co1109.2 (4)N4—C4—H4D108.4
C2—N2—H2A109.8C3—C4—H4D108.4
Co1—N2—H2A109.8H4C—C4—H4D107.5
C2—N2—H2B109.8N5—C5—C6112.4 (7)
Co1—N2—H2B109.8N5—C5—H5C109.1
H2A—N2—H2B108.3C6—C5—H5C109.1
C3—N3—Co1110.7 (5)N5—C5—H5D109.1
C3—N3—H3A109.5C6—C5—H5D109.1
Co1—N3—H3A109.5H5C—C5—H5D107.9
C3—N3—H3B109.5N6—C6—C5114.1 (7)
Co1—N3—H3B109.5N6—C6—H6C108.7
H3A—N3—H3B108.1C5—C6—H6C108.7
C4—N4—Co1110.7 (5)N6—C6—H6D108.7
C4—N4—H4A109.5C5—C6—H6D108.7
Co1—N4—H4A109.5H6C—C6—H6D107.6
C4—N4—H4B109.5
N2—Co1—N1—C114.4 (5)O9—B4—O5—B5168.5 (6)
N6—Co1—N1—C1108.9 (5)O6—B5—O5—B410.5 (9)
N3—Co1—N1—C182.5 (5)O10—B5—O5—B4168.4 (6)
N4—Co1—N1—C1160.5 (5)O10—B5—O6—B1177.1 (5)
N6—Co1—N2—C286.2 (6)O5—B5—O6—B14.2 (8)
N3—Co1—N2—C2101.2 (6)O4—B1—O6—B515.5 (7)
N1—Co1—N2—C210.5 (6)O3—B1—O6—B5135.4 (5)
N5—Co1—N2—C2165.1 (6)O1—B1—O6—B5105.3 (6)
N2—Co1—N3—C3175.7 (5)O17—B7—O11—B6178.1 (5)
N6—Co1—N3—C325.9 (11)O12—B7—O11—B63.0 (9)
N1—Co1—N3—C3104.1 (5)O14—B6—O11—B7126.0 (5)
N5—Co1—N3—C381.2 (5)O13—B6—O11—B75.6 (7)
N4—Co1—N3—C312.2 (5)O16—B6—O11—B7113.4 (5)
N6—Co1—N4—C4178.9 (6)O13—B8—O12—B73.4 (9)
N3—Co1—N4—C48.1 (6)O18—B8—O12—B7179.2 (6)
N1—Co1—N4—C483.4 (6)O11—B7—O12—B81.8 (9)
N5—Co1—N4—C4100.4 (6)O17—B7—O12—B8177.1 (6)
N2—Co1—N5—C5113.7 (5)O12—B8—O13—B60.3 (9)
N6—Co1—N5—C518.7 (5)O18—B8—O13—B6177.6 (5)
N3—Co1—N5—C5148.9 (5)O11—B6—O13—B83.9 (7)
N4—Co1—N5—C570.8 (5)O14—B6—O13—B8124.4 (5)
N2—Co1—N6—C690.4 (6)O16—B6—O13—B8116.4 (5)
N3—Co1—N6—C659.5 (11)O19—B9—O14—B6179.4 (6)
N1—Co1—N6—C6171.1 (6)O15—B9—O14—B60.6 (10)
N5—Co1—N6—C62.6 (6)O11—B6—O14—B9121.2 (6)
N4—Co1—N6—C696.6 (6)O13—B6—O14—B9116.7 (6)
O7—B2—O1—B1177.7 (5)O16—B6—O14—B90.9 (8)
O2—B2—O1—B10.8 (9)O16—B10—O15—B94.1 (9)
O4—B1—O1—B2112.9 (5)O20—B10—O15—B9174.0 (6)
O6—B1—O1—B2125.2 (5)O14—B9—O15—B103.2 (10)
O3—B1—O1—B27.0 (7)O19—B9—O15—B10176.8 (6)
O7—B2—O2—B3177.7 (6)O20—B10—O16—B6175.5 (5)
O1—B2—O2—B35.1 (9)O15—B10—O16—B62.6 (9)
O3—B3—O2—B20.5 (10)O11—B6—O16—B10119.9 (6)
O8—B3—O2—B2179.3 (6)O14—B6—O16—B100.1 (8)
O8—B3—O3—B1171.5 (6)O13—B6—O16—B10118.6 (5)
O2—B3—O3—B18.8 (10)Co1—N1—C1—C236.8 (9)
O4—B1—O3—B3108.3 (6)Co1—N2—C2—C134.8 (9)
O6—B1—O3—B3130.6 (6)N1—C1—C2—N248.5 (11)
O1—B1—O3—B311.8 (8)Co1—N3—C3—C431.1 (9)
O5—B4—O4—B10.7 (9)Co1—N4—C4—C328.2 (10)
O9—B4—O4—B1178.5 (5)N3—C3—C4—N440.7 (11)
O6—B1—O4—B413.8 (7)Co1—N5—C5—C637.6 (8)
O3—B1—O4—B4132.9 (5)Co1—N6—C6—C523.9 (9)
O1—B1—O4—B4106.7 (6)N5—C5—C6—N641.8 (10)
O4—B4—O5—B512.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O15i0.902.363.188 (7)154
N1—H1A···O19i0.902.643.425 (7)147
N1—H1B···O11ii0.902.383.276 (7)174
N2—H2A···O8iii0.902.233.089 (7)159
N2—H2B···O21iv0.902.183.030 (10)157
N3—H3A···O2iii0.902.233.074 (7)157
N4—H4A···O20i0.902.493.199 (7)136
N5—H5B···O7iii0.902.343.085 (7)140
N6—H6A···O20i0.902.423.302 (7)168
N6—H6B···O22iv0.902.383.235 (12)158
O7—H7···O16v0.821.842.647 (5)170
O8—H8···O3iii0.821.872.687 (5)170
O10—H10···O13vi0.821.942.753 (6)172
O18—H18···O6vii0.821.882.687 (6)170
O19—H19···O14i0.821.892.691 (5)164
O20—H20···O1viii0.821.912.725 (5)170
O22—H3···O19ix0.852.452.993 (11)122
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1, y+1/2, z1/2; (vi) x1, y, z; (vii) x+1, y, z; (viii) x+1, y+1/2, z+1/2; (ix) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C2H8N2)3][B5O6(OH)4]2·2H2O
Mr711.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.504 (4), 23.127 (10), 15.306 (7)
β (°) 93.549 (7)
V3)3004 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.50 × 0.47 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2001)
Tmin, Tmax0.732, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
15470, 5252, 2809
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.232, 1.02
No. of reflections5252
No. of parameters406
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.68, 0.70

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O15i0.902.363.188 (7)154
N1—H1A···O19i0.902.643.425 (7)147
N1—H1B···O11ii0.902.383.276 (7)174
N2—H2A···O8iii0.902.233.089 (7)159
N2—H2B···O21iv0.902.183.030 (10)157
N3—H3A···O2iii0.902.233.074 (7)157
N4—H4A···O20i0.902.493.199 (7)136
N5—H5B···O7iii0.902.343.085 (7)140
N6—H6A···O20i0.902.423.302 (7)168
N6—H6B···O22iv0.902.383.235 (12)158
O7—H7···O16v0.821.842.647 (5)170
O8—H8···O3iii0.821.872.687 (5)170
O10—H10···O13vi0.821.942.753 (6)172
O18—H18···O6vii0.821.882.687 (6)170
O19—H19···O14i0.821.892.691 (5)164
O20—H20···O1viii0.821.912.725 (5)170
O22—H3···O19ix0.852.452.993 (11)122
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1, y+1/2, z1/2; (vi) x1, y, z; (vii) x+1, y, z; (viii) x+1, y+1/2, z+1/2; (ix) x1, y, z1.
 

Acknowledgements

We acknowledge the Scientific Research Projects of Higher Education of Inner Mongolia (NJzy08217).

References

First citationBecker, P. (1998). Adv. Mater. 10, 979--992.  CrossRef Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H. J., Liu, Z. H. & Sun, L. M. (2007). Chin. J. Chem. 25, 1131–1134.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J., Xia, S. P. & Gao, S. Y. (1995). Spectrochim. Acta. 51A, 519–532.  Google Scholar
First citationLiu, Z. H., Zhang, J. J. & Zhang, W. J. (2006). Inorg. Chim. Acta. 359, 519–524.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSung, H. H. Y., Wu, M. M. & Williams, I. D. (2000). Inorg. Chem. Commun. 3, 401–404.  Web of Science CSD CrossRef CAS Google Scholar
First citationTouboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342.  Web of Science CrossRef CAS Google Scholar
First citationWang, G. M., Sun, Y. Q. & Yang, G. Y. (2005). J. Solid State Chem. 178, 729–735.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, G. M., Sun, Y. Q. & Yang, G. Y. (2006). J. Solid State Chem. 179, 1545–1553.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-X., Zheng, S.-T. & Yang, G.-Y. (2004). Acta Cryst. C60, m241–m243.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds