organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Eth­oxy­benz­yl)-1,3-oxazolidin-2-one

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: wywhy007@yahoo.com.cn

(Received 2 March 2009; accepted 16 March 2009; online 19 March 2009)

In the title compound, C12H15NO3, the ethoxy­benzyl ring plane forms a dihedral angle of 60.3 (4)° with the mean plane of the oxazolidine ring. The mol­ecules are linked through N—H⋯O hydrogen bonds into a chain running in the b direction.

Related literature

For background literature, see: Chrzanowska & Rozwadowska (2004[Chrzanowska, M. & Rozwadowska, M. D. (2004). Chem. Rev. 104, 3341-3370.]); Rozwadowska (1994[Rozwadowska, M. D. (1994). Heterocycles, 39, 903-931.]); Scott & Williams (2002[Scott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669-1730.]); Tussetschläger et al. (2007[Tussetschläger, S., Baro, A., Laschat, S. & Frey, W. (2007). Eur. J. Org. Chem. pp. 5590-5602.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO3

  • Mr = 221.25

  • Orthorhombic, P 21 21 21

  • a = 5.7960 (12) Å

  • b = 9.924 (2) Å

  • c = 20.209 (4) Å

  • V = 1162.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.973, Tmax = 0.991

  • 2427 measured reflections

  • 1246 independent reflections

  • 904 reflections with I > 2σ(I)

  • Rint = 0.043

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.150

  • S = 1.01

  • 1246 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O3i 0.86 1.99 2.845 (4) 171
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrahydroisoquinoline alkaloids have received much interest because of their tremendous structural diversity and broad spectrum of biological and pharmaceutical activities (Rozwadowska, 1994; Scott & Williams, 2002; Chrzanowska & Rozwadowska, 2004). As part of our own work in this area, we prepared the title compound, (I), as an intermediate in the synthesis of tyrosine-derived N-[(phenylsulfonyl)alkyl]oxazolidinones as an extension of Petrini's methodology (Tussetschläger, et al., 2007). The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the mean planes of the C1 - C9/O1 ethoxybenzyl ring and the C10/N/C12/O2/C11/O3 oxazolidine ring is 60.3 (4)°. In the crystal structure, adjacent molecules are linked through N—H···O type hydrogen-bonding interactions resulting in chains running in the b direction (Table 1). The structure also contains non-classical hydrogen bonds of the type C—H···O linking the molecules into chains along the a-axis.

Related literature top

For background literature, see: Chrzanowska & Rozwadowska (2004); Rozwadowska (1994); Scott & Williams (2002); Tussetschläger et al. (2007).

Experimental top

Sodium borohydride was added to a solution of 2-(tert-butoxycarbonylamino)-3-(4-ethoxyphenyl)propanoic acid (3.09 g, 10 mmol) in tetrahydrofuran (50 ml). Then methanol (5 ml) was slowly added to the resulting suspension and the temperature kept below 243 K. After the mixture was stirred for 1 h at room temperature, the excess reagent was destroyed by addition of acetic acid (1 ml). The solvent was evaporated, and the oily residue was diluted with water (50 ml) and extracted three times with ethyl acetate (25 ml) each. The combined organic extracts were wash with brine, dried with sodium sulfate, and concentrated in vacuo. The crude tert-butyl 1-(4-ethoxyphenyl)-3- hydroxypropan-2-ylcarbamate was obtained 2.7 g. Then tert-butyl 1- (4-ethoxyphenyl)-3-hydroxypropan-2-ylcarbamate (2.7 g) in THF (50 ml) was added to a suspension of sodium hydride (0.92 g, 23 mmol) in THF (120 ml) over a period of 20 min, stirred for 12 h, then quenched with a saturated solution of aqueous ammonium chloride (45 ml). The reaction mixture was then extracted three times with ethyl acetate (25 ml) each, the organic layers combined, washed with aqueous hydrochloric acid (60 ml, 5% solution), saturated NaHCO3 solution (60 ml), and brine (60 ml), and then dried over sodium sulfate. The solvent was then removed in vacuo to yield the title compound (1.81 g, 8.2 mmol) as a white solid. The title compound was crystalized by slow evaporation of a solution in methanol.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with N—H = 0.86 and C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, mehtylene and methine H atoms, respectively, and Uiso(H) = 1.5Ueq(methyl) and 1.2Ueq(the rest) parent atoms. An absolute configuration could not be established by anomalous dispersion effects. Therefore, Fridel pairs (846) were merged.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
4-(4-Ethoxybenzyl)-1,3-oxazolidin-2-one top
Crystal data top
C12H15NO3F(000) = 472
Mr = 221.25Dx = 1.264 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.7960 (12) Åθ = 9–12°
b = 9.924 (2) ŵ = 0.09 mm1
c = 20.209 (4) ÅT = 293 K
V = 1162.4 (4) Å3Needle, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
904 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 06
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
k = 011
Tmin = 0.973, Tmax = 0.991l = 2424
2427 measured reflections3 standard reflections every 200 reflections
1246 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.08P)2 + 0.28P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1246 reflectionsΔρmax = 0.17 e Å3
146 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (6)
Crystal data top
C12H15NO3V = 1162.4 (4) Å3
Mr = 221.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.7960 (12) ŵ = 0.09 mm1
b = 9.924 (2) ÅT = 293 K
c = 20.209 (4) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
904 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
Rint = 0.043
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
2427 measured reflections intensity decay: 1%
1246 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
1246 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.1179 (6)0.5921 (3)1.00790 (17)0.0589 (9)
H0A0.15810.67281.01820.071*
O10.4026 (6)0.3182 (3)1.25901 (14)0.0754 (9)
O20.0990 (5)0.4271 (3)0.97230 (16)0.0696 (9)
O30.2494 (5)0.6348 (3)0.97241 (19)0.0845 (11)
C10.7072 (9)0.3538 (5)1.3348 (2)0.0801 (14)
H1A0.78730.42071.36030.120*
H1B0.81340.31071.30510.120*
H1C0.64150.28781.36390.120*
C20.5179 (9)0.4202 (4)1.2955 (2)0.0725 (12)
H2A0.41050.46501.32500.087*
H2B0.58240.48691.26570.087*
C30.2251 (8)0.3587 (4)1.21793 (19)0.0596 (11)
C40.1675 (9)0.4911 (4)1.2056 (2)0.0651 (12)
H4A0.25040.56081.22520.078*
C50.0159 (8)0.5190 (4)1.1637 (2)0.0643 (12)
H5A0.05420.60861.15590.077*
C60.1449 (8)0.4190 (4)1.13291 (19)0.0595 (11)
C70.0758 (10)0.2863 (4)1.1469 (2)0.0648 (13)
H7A0.15480.21561.12700.078*
C80.1011 (10)0.2573 (4)1.1883 (2)0.0686 (13)
H8A0.13910.16791.19670.082*
C90.3390 (7)0.4521 (4)1.0869 (2)0.0660 (12)
H9A0.41730.53171.10330.079*
H9B0.44900.37841.08770.079*
C100.2686 (7)0.4773 (4)1.0154 (2)0.0558 (10)
H10A0.40740.49100.98850.067*
C110.1210 (7)0.3682 (4)0.9839 (2)0.0568 (10)
H11A0.10710.29141.01340.068*
H11B0.18920.33810.94270.068*
C120.0875 (7)0.5618 (4)0.9838 (2)0.0565 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0555 (19)0.0374 (15)0.084 (2)0.0096 (16)0.0052 (19)0.0044 (15)
O10.096 (2)0.0555 (16)0.0745 (18)0.0051 (18)0.000 (2)0.0037 (14)
O20.0475 (15)0.0404 (13)0.121 (2)0.0004 (13)0.0102 (17)0.0137 (15)
O30.0402 (15)0.0525 (16)0.161 (3)0.0080 (15)0.003 (2)0.0047 (18)
C10.081 (3)0.082 (3)0.077 (3)0.000 (3)0.000 (3)0.009 (3)
C20.079 (3)0.063 (2)0.076 (3)0.006 (3)0.001 (3)0.009 (2)
C30.067 (3)0.058 (2)0.054 (2)0.005 (2)0.010 (2)0.0022 (18)
C40.079 (3)0.051 (2)0.065 (2)0.007 (2)0.002 (3)0.0078 (19)
C50.071 (3)0.048 (2)0.074 (3)0.001 (2)0.011 (3)0.008 (2)
C60.066 (3)0.053 (2)0.059 (2)0.010 (2)0.020 (2)0.0044 (18)
C70.083 (3)0.048 (2)0.064 (2)0.016 (2)0.007 (3)0.0046 (18)
C80.100 (4)0.045 (2)0.061 (2)0.006 (3)0.006 (3)0.0016 (18)
C90.054 (2)0.059 (2)0.085 (3)0.003 (2)0.015 (2)0.012 (2)
C100.0358 (18)0.049 (2)0.082 (3)0.0002 (18)0.007 (2)0.005 (2)
C110.054 (2)0.048 (2)0.069 (2)0.010 (2)0.002 (2)0.0077 (18)
C120.044 (2)0.0382 (18)0.088 (3)0.0028 (18)0.011 (2)0.0025 (19)
Geometric parameters (Å, º) top
N—C121.321 (5)C4—C51.387 (6)
N—C101.444 (5)C4—H4A0.9300
N—H0A0.8600C5—C61.390 (6)
O1—C31.382 (5)C5—H5A0.9300
O1—C21.420 (5)C6—C71.405 (6)
O2—C121.358 (5)C6—C91.497 (6)
O2—C111.423 (5)C7—C81.354 (7)
O3—C121.208 (5)C7—H7A0.9300
C1—C21.506 (6)C8—H8A0.9300
C1—H1A0.9600C9—C101.522 (6)
C1—H1B0.9600C9—H9A0.9700
C1—H1C0.9600C9—H9B0.9700
C2—H2A0.9700C10—C111.519 (5)
C2—H2B0.9700C10—H10A0.9800
C3—C81.374 (6)C11—H11A0.9700
C3—C41.379 (6)C11—H11B0.9700
C12—N—C10113.8 (3)C7—C6—C9123.1 (4)
C12—N—H0A123.1C8—C7—C6122.7 (4)
C10—N—H0A123.1C8—C7—H7A118.7
C3—O1—C2117.1 (3)C6—C7—H7A118.7
C12—O2—C11109.4 (3)C7—C8—C3120.6 (4)
C2—C1—H1A109.5C7—C8—H8A119.7
C2—C1—H1B109.5C3—C8—H8A119.7
H1A—C1—H1B109.5C6—C9—C10115.1 (3)
C2—C1—H1C109.5C6—C9—H9A108.5
H1A—C1—H1C109.5C10—C9—H9A108.5
H1B—C1—H1C109.5C6—C9—H9B108.5
O1—C2—C1107.8 (4)C10—C9—H9B108.5
O1—C2—H2A110.2H9A—C9—H9B107.5
C1—C2—H2A110.2N—C10—C11100.2 (3)
O1—C2—H2B110.2N—C10—C9113.0 (3)
C1—C2—H2B110.2C11—C10—C9115.5 (3)
H2A—C2—H2B108.5N—C10—H10A109.2
C8—C3—C4119.5 (4)C11—C10—H10A109.2
C8—C3—O1116.0 (4)C9—C10—H10A109.2
C4—C3—O1124.4 (4)O2—C11—C10106.3 (3)
C3—C4—C5119.1 (4)O2—C11—H11A110.5
C3—C4—H4A120.5C10—C11—H11A110.5
C5—C4—H4A120.5O2—C11—H11B110.5
C4—C5—C6122.9 (4)C10—C11—H11B110.5
C4—C5—H5A118.6H11A—C11—H11B108.7
C6—C5—H5A118.6O3—C12—N129.3 (4)
C5—C6—C7115.2 (4)O3—C12—O2121.3 (4)
C5—C6—C9121.7 (4)N—C12—O2109.4 (4)
C3—O1—C2—C1178.3 (3)C5—C6—C9—C1085.5 (5)
C2—O1—C3—C8173.6 (4)C7—C6—C9—C1092.8 (5)
C2—O1—C3—C46.2 (6)C12—N—C10—C115.5 (4)
C8—C3—C4—C50.3 (6)C12—N—C10—C9118.0 (4)
O1—C3—C4—C5179.5 (4)C6—C9—C10—N62.6 (4)
C3—C4—C5—C60.4 (6)C6—C9—C10—C1152.0 (5)
C4—C5—C6—C70.3 (6)C12—O2—C11—C109.0 (5)
C4—C5—C6—C9178.8 (4)N—C10—C11—O28.4 (4)
C5—C6—C7—C81.1 (6)C9—C10—C11—O2113.4 (4)
C9—C6—C7—C8179.5 (4)C10—N—C12—O3179.6 (4)
C6—C7—C8—C31.1 (7)C10—N—C12—O20.3 (5)
C4—C3—C8—C70.4 (6)C11—O2—C12—O3174.4 (4)
O1—C3—C8—C7179.7 (4)C11—O2—C12—N5.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O3i0.861.992.845 (4)171
C10—H10A···O3ii0.982.473.317 (5)144
Symmetry codes: (i) x1/2, y+3/2, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H15NO3
Mr221.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.7960 (12), 9.924 (2), 20.209 (4)
V3)1162.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2427, 1246, 904
Rint0.043
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.150, 1.01
No. of reflections1246
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O3i0.86001.99002.845 (4)171.00
Symmetry code: (i) x1/2, y+3/2, z+2.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationChrzanowska, M. & Rozwadowska, M. D. (2004). Chem. Rev. 104, 3341–3370.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationRozwadowska, M. D. (1994). Heterocycles, 39, 903–931.  CAS Google Scholar
First citationScott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTussetschläger, S., Baro, A., Laschat, S. & Frey, W. (2007). Eur. J. Org. Chem. pp. 5590–5602.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds