organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl N-[2,6-bis­­(meth­oxy­meth­­oxy)phen­yl]imino­di­acetate

aMedicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Park Parade, Parkville, Victoria 3052, Australia, and bSchool of Chemistry, Monash University, Clayton, Victoria 3800, Australia
*Correspondence e-mail: craig.forsyth@sci.monash.edu.au

(Received 4 March 2009; accepted 13 March 2009; online 25 March 2009)

The title mol­ecule, C20H31NO8, has pseudo-C2 symmetry about the C—N bond, with the bis­(tert-butoxy­carbon­yl)amino group twisted from the benzene ring plane by ca 60° and the bulky tert-butoxy­carbonyl (Boc) groups are orientated away from the substituted aniline group. As part of an anti­bacterial drug discovery programme furnishing analogues of platensimycin, we unexpectedly synthesized the bis-Boc-protected aniline.

Related literature

For the synthesis, see: Nicolaou et al. (2006[Nicolaou, K. C., Li, A. & Edmonds, D. J. (2006). Angew. Chem. Int. Ed. 45, 7086-7090.])Khakham (2007[Khakham, Y. (2007). Honours thesis, Monash University (Parkville), Victoria, Australia.]). For related structures, see: Marino et al. (2002[Marino, J. P., Rubio, M. B., Cao, G. & de Dios, A. (2002). J. Am. Chem. Soc. 124, 13398-13399.]); Macleod et al. (2003[Macleod, C., McKiernan, G. J., Guthrie, E. J., Farrugia, L. J., Hamprecht, D. W., Macritchie, J. & Hartley, R. C. (2003). J. Org. Chem. 68, 387-401.]). For the protection of amino groups in synthesis, see: ; Kshirsagar (2008[Kshirsagar, T. (2008). High-Throughput Lead Optimization in Drug Discovery. Boca Raton: CRC Press.]).

[Scheme 1]

Experimental

Crystal data
  • C20H31NO8

  • Mr = 413.46

  • Monoclinic, P 21 /c

  • a = 11.2544 (3) Å

  • b = 19.6759 (6) Å

  • c = 9.8325 (3) Å

  • β = 93.207 (1)°

  • V = 2173.90 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS and CIFTAB. University of Göttingen, Germany.]) Tmin = 0.95, Tmax = 0.97

  • 15504 measured reflections

  • 4207 independent reflections

  • 3714 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.05

  • 4207 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: CIFTAB (Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS and CIFTAB. University of Göttingen, Germany.]).

Supporting information


Comment top

Protection of amino functionalities utilizing bulky tert-butylcarboxy groups is a common synthetic strategy in drug dicovery research programmes (Kshirsagar, 2008). Typically, mono-substituted derivatives are formed from reactions of anilines and di-tert-butyldicarbonate, with di-substitution generally inhibited by the poorer nucleophilic character of the intermediate secondary carbamate. In the current example, reaction of 2,6-bis(methoxymethoxy)aniline with the di-tert-butyldicarbonate gave 2-[bis(tert-butoxycarbonyl)amino]-1,3-bis(methoxymethoxy)benzene (I) in good yield. Surprisingly NMR spectra showed no evidence of restricted rotation of the tert-butoxycarbonyl groups in solution. The solid state structure showed a pseudo C2 symmetric molecule with the two methoxymethoxy arms of the benzene nucleus forming an S-shaped configuration. The bis(tert-butoxycarbonyl)amino fragment is twisted from the aromatic ring plane with the torsion angles C2—C1—N1—C12 57.7 (2) °; C6—C1—N1—C11 59.7 (2) ° smaller than for an analogous bis Boc aniline di-tert-butyl(2-(2-((4-methylphenyl)thio)-5-oxo-3-(3-oxohexyl) tetrahydrofuran-3-yl)phenyl)imidocarbonate (II) (73.6 °, 93.3 °) Marino et al. 2002), but larger than those observed for mono-protected anilines (e.g. 36.3 (3) ° in 2-(2'-N-tert-butoxycarbonyl)phenyl-1,3-dithiane (Macleod et al. 2003). The bulky tert-butoxycarbonyl groups are orientated away from the aniline group in I and II in contrast to the only other bis(tert-butoxycarbonyl)aniline structure, 2-(2'(N,N'-bis(tert-butoxycarbonyl)amino)phenyl-1,3-dithiane, in which the carbonyl groups point away from the aromatic ring (Macleod et al. 2003). No significant interactions between molecules of the title compound were observed (closest contact O7···H7a(#1) 2.474 Å, #1 x, 1/2 - y, 1/2 + z) and the observed configuration presumably derives from the steric repulsion between the ortho methoxymethoxy substitutents of the analine and the bulky tert-butoxycarbonyl groups.

Related literature top

For background literature, see: Nicolaou et al. (2006). For related structures, see: Marino et al. (2002); Macleod et al. (2003).

For related literature, see: Khakham (2007); Kshirsagar (2008).

Experimental top

The title compound (I) was synthesized from 2,6-bis(methoxymethoxy)aniline (Nicolaou et al., 2006) and commercially available di-tert-butyldicarbonate in the presence of a catalytic amount of 4-(dimethylamino)pyridine (DMAP), using tetrahydrofuran as solvent (Khakham, 2007). To a 50 ml round bottom flask was added 2,6-di(methoxymethoxy)aniline (0.820 g, 3.85 mmol) and di-tert-butyldicarbonate (2.51 g, 11.5 mmol) and 4-(dimethylamino)pyridine (0.120 g, 0.982 mmol) and tetrahydrofuran (15 ml). The reaction mixture was heated at reflux with stirring for 24 h, cooled then evaporated to dryness. The resulting residue was purified by flash chromatography (1:4 ethyl acetate/hexane) and the major fractions were combined then evaporated to dryness. The title compound was recrystallized from dichloromethane-hexane as colorless needles (549 mg, 46%) suitable for X-ray diffraction. Mp 366–367 K.

Refinement top

All H atoms for the primary molecules were initially located in the difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms with phenyl, methyl and methylene C—H distances 0.95, 0.98 and 0.99 Å, respectively and Uiso(H) = 1.5 and 1.2 times Ueq(C) for methyl and non-methyl H-atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular diagram of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Di-tert-butyl N-[2,6-bis(methoxymethoxy)phenyl]iminodiacetate top
Crystal data top
C20H31NO8F(000) = 888
Mr = 413.46Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15504 reflections
a = 11.2544 (3) Åθ = 2.1–26.0°
b = 19.6759 (6) ŵ = 0.10 mm1
c = 9.8325 (3) ÅT = 123 K
β = 93.207 (1)°Prism, colourless
V = 2173.90 (11) Å30.25 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker X8 APEX CCD
diffractometer
4207 independent reflections
Radiation source: fine-focus sealed tube3714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Thin–slice ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1311
Tmin = 0.95, Tmax = 0.97k = 2424
15504 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.7413P]
where P = (Fo2 + 2Fc2)/3
4207 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H31NO8V = 2173.90 (11) Å3
Mr = 413.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2544 (3) ŵ = 0.10 mm1
b = 19.6759 (6) ÅT = 123 K
c = 9.8325 (3) Å0.25 × 0.25 × 0.25 mm
β = 93.207 (1)°
Data collection top
Bruker X8 APEX CCD
diffractometer
4207 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3714 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.026
15504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
4207 reflectionsΔρmin = 0.22 e Å3
264 parameters
Special details top

Experimental. 1H NMR (CDCl3) δ 1.45(18H, s, tert-Bu), 3.51 (6H, s, OCH3), 5.21 (4H, s, OCH2O), 6.85 (2H, d, J = 8 Hz, H3 H5), 7.21 (1H, t, J = 8 Hz, H4). 13C NMR (CDCl3) δ 27.9 (CH3), 56.0 (CH3), 82.0 (CH2), 95.0 (CH2), 108.7 (CH), 128.7 (CH), 151.5 (Cq), 162.0 (Cq). ESI MS (20 V) m/z 844 ([2M+NH4]+, 25%), 414 ([M+H]+, 26%), 358 (35%), 302 (100%), 258 (40%), 182 (39%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01820 (8)0.15220 (4)0.49516 (9)0.0208 (2)
O20.17789 (8)0.19162 (5)0.45496 (10)0.0239 (2)
O30.20418 (8)0.02812 (4)0.84955 (9)0.0222 (2)
O40.22082 (9)0.08991 (5)0.87902 (10)0.0275 (2)
O50.32175 (8)0.04924 (4)0.57699 (9)0.0226 (2)
O60.40454 (8)0.13528 (5)0.70366 (9)0.0215 (2)
O70.10556 (8)0.22153 (4)0.75269 (9)0.0209 (2)
O80.26357 (8)0.23752 (4)0.62311 (9)0.0189 (2)
N10.20550 (9)0.13091 (5)0.66923 (10)0.0170 (2)
C10.10389 (11)0.08748 (6)0.67245 (12)0.0169 (3)
C20.00578 (11)0.09870 (6)0.58212 (12)0.0183 (3)
C30.09338 (12)0.05666 (6)0.58451 (14)0.0224 (3)
H30.16120.06460.52470.027*
C40.09125 (12)0.00289 (7)0.67605 (14)0.0245 (3)
H40.15810.02660.67660.029*
C50.00498 (12)0.00910 (6)0.76637 (14)0.0228 (3)
H50.00420.04610.82830.027*
C60.10309 (11)0.03395 (6)0.76507 (12)0.0188 (3)
C70.07663 (12)0.16675 (7)0.39715 (13)0.0223 (3)
H7A0.04890.20060.33150.027*
H7B0.09760.12470.34590.027*
C80.15998 (14)0.25694 (7)0.51580 (17)0.0344 (4)
H8A0.10330.25310.59480.052*
H8B0.23600.27440.54520.052*
H8C0.12840.28820.44920.052*
C90.21192 (14)0.02718 (7)0.94256 (13)0.0283 (3)
H9A0.28240.02061.00610.034*
H9B0.14050.02710.99690.034*
C100.32667 (13)0.09618 (8)0.80655 (16)0.0331 (3)
H10A0.32540.06260.73280.050*
H10B0.33100.14200.76810.050*
H10C0.39620.08820.86900.050*
C110.31523 (11)0.10078 (6)0.64174 (12)0.0174 (3)
C120.18617 (11)0.20088 (6)0.68888 (11)0.0159 (2)
C130.52977 (12)0.11794 (7)0.67929 (14)0.0246 (3)
C140.55807 (14)0.04678 (8)0.73059 (17)0.0376 (4)
H14A0.51290.01360.67410.056*
H14B0.53620.04270.82530.056*
H14C0.64340.03800.72550.056*
C150.59817 (13)0.17074 (9)0.76495 (17)0.0393 (4)
H15A0.58300.16400.86120.059*
H15B0.57210.21630.73650.059*
H15C0.68350.16590.75240.059*
C160.55154 (13)0.12683 (9)0.53009 (15)0.0351 (4)
H16A0.50670.09230.47670.053*
H16B0.63670.12170.51650.053*
H16C0.52530.17220.50030.053*
C170.26643 (12)0.31241 (6)0.63900 (13)0.0200 (3)
C180.15042 (12)0.34337 (7)0.58381 (13)0.0238 (3)
H18A0.13600.33040.48810.036*
H18B0.15510.39300.59100.036*
H18C0.08510.32670.63660.036*
C190.36707 (13)0.33176 (7)0.54976 (16)0.0295 (3)
H19A0.34530.31970.45490.044*
H19B0.43950.30730.58040.044*
H19C0.38130.38080.55630.044*
C200.29631 (14)0.33007 (7)0.78745 (14)0.0310 (3)
H20A0.37210.30880.81740.047*
H20B0.23320.31330.84340.047*
H20C0.30290.37950.79730.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0161 (5)0.0216 (5)0.0245 (5)0.0008 (4)0.0005 (4)0.0046 (4)
O20.0167 (5)0.0224 (5)0.0325 (5)0.0018 (4)0.0003 (4)0.0031 (4)
O30.0259 (5)0.0183 (5)0.0222 (4)0.0018 (4)0.0017 (4)0.0016 (3)
O40.0336 (6)0.0189 (5)0.0300 (5)0.0040 (4)0.0022 (4)0.0032 (4)
O50.0207 (5)0.0203 (5)0.0269 (5)0.0022 (4)0.0023 (4)0.0058 (4)
O60.0128 (5)0.0250 (5)0.0265 (5)0.0006 (4)0.0003 (4)0.0060 (4)
O70.0225 (5)0.0181 (4)0.0227 (4)0.0014 (4)0.0074 (4)0.0008 (3)
O80.0200 (5)0.0143 (4)0.0227 (4)0.0020 (3)0.0056 (4)0.0010 (3)
N10.0135 (5)0.0146 (5)0.0230 (5)0.0002 (4)0.0017 (4)0.0006 (4)
C10.0150 (6)0.0138 (6)0.0222 (6)0.0001 (5)0.0047 (5)0.0026 (5)
C20.0176 (7)0.0157 (6)0.0219 (6)0.0022 (5)0.0050 (5)0.0013 (5)
C30.0150 (7)0.0208 (6)0.0314 (7)0.0007 (5)0.0024 (5)0.0028 (5)
C40.0177 (7)0.0174 (6)0.0394 (8)0.0031 (5)0.0102 (6)0.0032 (5)
C50.0251 (7)0.0142 (6)0.0302 (7)0.0006 (5)0.0114 (6)0.0019 (5)
C60.0203 (7)0.0159 (6)0.0205 (6)0.0038 (5)0.0042 (5)0.0032 (5)
C70.0195 (7)0.0260 (7)0.0210 (6)0.0024 (5)0.0016 (5)0.0002 (5)
C80.0310 (9)0.0256 (7)0.0462 (9)0.0045 (6)0.0015 (7)0.0094 (6)
C90.0428 (9)0.0222 (7)0.0197 (6)0.0051 (6)0.0017 (6)0.0033 (5)
C100.0296 (8)0.0281 (8)0.0415 (8)0.0070 (6)0.0001 (6)0.0030 (6)
C110.0158 (7)0.0188 (6)0.0175 (6)0.0001 (5)0.0020 (5)0.0025 (5)
C120.0170 (6)0.0156 (6)0.0149 (5)0.0004 (5)0.0011 (5)0.0001 (4)
C130.0123 (7)0.0344 (8)0.0269 (7)0.0022 (5)0.0004 (5)0.0017 (6)
C140.0230 (8)0.0432 (9)0.0461 (9)0.0101 (7)0.0037 (7)0.0073 (7)
C150.0194 (8)0.0537 (10)0.0445 (9)0.0062 (7)0.0029 (7)0.0104 (8)
C160.0192 (8)0.0569 (10)0.0295 (8)0.0030 (7)0.0037 (6)0.0026 (7)
C170.0243 (7)0.0125 (6)0.0235 (6)0.0036 (5)0.0021 (5)0.0007 (5)
C180.0275 (8)0.0195 (6)0.0249 (6)0.0018 (5)0.0046 (5)0.0037 (5)
C190.0261 (8)0.0219 (7)0.0413 (8)0.0044 (6)0.0085 (6)0.0039 (6)
C200.0412 (9)0.0235 (7)0.0275 (7)0.0060 (6)0.0066 (6)0.0038 (6)
Geometric parameters (Å, º) top
O1—C21.3683 (15)C8—H8C0.9800
O1—C71.4264 (15)C9—H9A0.9900
O2—C71.3907 (16)C9—H9B0.9900
O2—C81.4272 (16)C10—H10A0.9800
O3—C61.3754 (16)C10—H10B0.9800
O3—C91.4210 (15)C10—H10C0.9800
O4—C91.3894 (16)C13—C161.5109 (19)
O4—C101.4272 (18)C13—C141.516 (2)
O5—C111.2017 (15)C13—C151.519 (2)
O6—C111.3317 (15)C14—H14A0.9800
O6—C131.4825 (16)C14—H14B0.9800
O7—C121.2023 (15)C14—H14C0.9800
O8—C121.3266 (15)C15—H15A0.9800
O8—C171.4820 (14)C15—H15B0.9800
N1—C121.4088 (15)C15—H15C0.9800
N1—C111.4096 (16)C16—H16A0.9800
N1—C11.4292 (16)C16—H16B0.9800
C1—C61.3928 (17)C16—H16C0.9800
C1—C21.3954 (18)C17—C181.5136 (19)
C2—C31.3903 (18)C17—C191.5195 (18)
C3—C41.3884 (19)C17—C201.5196 (18)
C3—H30.9500C18—H18A0.9800
C4—C51.382 (2)C18—H18B0.9800
C4—H40.9500C18—H18C0.9800
C5—C61.3923 (18)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C7—H7A0.9900C19—H19C0.9800
C7—H7B0.9900C20—H20A0.9800
C8—H8A0.9800C20—H20B0.9800
C8—H8B0.9800C20—H20C0.9800
C2—O1—C7118.55 (10)O6—C11—N1110.18 (10)
C7—O2—C8112.86 (11)O7—C12—O8127.29 (11)
C6—O3—C9118.13 (10)O7—C12—N1121.92 (11)
C9—O4—C10112.61 (11)O8—C12—N1110.71 (10)
C11—O6—C13120.59 (10)O6—C13—C16109.73 (11)
C12—O8—C17120.00 (9)O6—C13—C14110.04 (11)
C12—N1—C11125.51 (10)C16—C13—C14112.79 (13)
C12—N1—C1116.83 (10)O6—C13—C15102.12 (11)
C11—N1—C1117.61 (10)C16—C13—C15110.76 (13)
C6—C1—C2120.13 (11)C14—C13—C15110.89 (13)
C6—C1—N1120.07 (11)C13—C14—H14A109.5
C2—C1—N1119.80 (11)C13—C14—H14B109.5
O1—C2—C3125.34 (12)H14A—C14—H14B109.5
O1—C2—C1114.49 (11)C13—C14—H14C109.5
C3—C2—C1120.17 (12)H14A—C14—H14C109.5
C4—C3—C2118.65 (12)H14B—C14—H14C109.5
C4—C3—H3120.7C13—C15—H15A109.5
C2—C3—H3120.7C13—C15—H15B109.5
C5—C4—C3122.09 (12)H15A—C15—H15B109.5
C5—C4—H4119.0C13—C15—H15C109.5
C3—C4—H4119.0H15A—C15—H15C109.5
C4—C5—C6118.93 (12)H15B—C15—H15C109.5
C4—C5—H5120.5C13—C16—H16A109.5
C6—C5—H5120.5C13—C16—H16B109.5
O3—C6—C5124.99 (11)H16A—C16—H16B109.5
O3—C6—C1115.00 (11)C13—C16—H16C109.5
C5—C6—C1120.01 (12)H16A—C16—H16C109.5
O2—C7—O1113.19 (10)H16B—C16—H16C109.5
O2—C7—H7A108.9O8—C17—C18110.43 (10)
O1—C7—H7A108.9O8—C17—C19101.58 (10)
O2—C7—H7B108.9C18—C17—C19110.37 (11)
O1—C7—H7B108.9O8—C17—C20109.33 (10)
H7A—C7—H7B107.8C18—C17—C20113.10 (11)
O2—C8—H8A109.5C19—C17—C20111.43 (12)
O2—C8—H8B109.5C17—C18—H18A109.5
H8A—C8—H8B109.5C17—C18—H18B109.5
O2—C8—H8C109.5H18A—C18—H18B109.5
H8A—C8—H8C109.5C17—C18—H18C109.5
H8B—C8—H8C109.5H18A—C18—H18C109.5
O4—C9—O3113.22 (10)H18B—C18—H18C109.5
O4—C9—H9A108.9C17—C19—H19A109.5
O3—C9—H9A108.9C17—C19—H19B109.5
O4—C9—H9B108.9H19A—C19—H19B109.5
O3—C9—H9B108.9C17—C19—H19C109.5
H9A—C9—H9B107.7H19A—C19—H19C109.5
O4—C10—H10A109.5H19B—C19—H19C109.5
O4—C10—H10B109.5C17—C20—H20A109.5
H10A—C10—H10B109.5C17—C20—H20B109.5
O4—C10—H10C109.5H20A—C20—H20B109.5
H10A—C10—H10C109.5C17—C20—H20C109.5
H10B—C10—H10C109.5H20A—C20—H20C109.5
O5—C11—O6127.26 (12)H20B—C20—H20C109.5
O5—C11—N1122.45 (11)
C2—C1—N1—C1257.65 (15)C6—C1—N1—C1159.68 (15)

Experimental details

Crystal data
Chemical formulaC20H31NO8
Mr413.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)11.2544 (3), 19.6759 (6), 9.8325 (3)
β (°) 93.207 (1)
V3)2173.90 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerBruker X8 APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.95, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
15504, 4207, 3714
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.05
No. of reflections4207
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), CIFTAB (Sheldrick, 1997).

 

Acknowledgements

The authors acknowledge support from Monash University and the Australian Research Council.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhakham, Y. (2007). Honours thesis, Monash University (Parkville), Victoria, Australia.  Google Scholar
First citationKshirsagar, T. (2008). High-Throughput Lead Optimization in Drug Discovery. Boca Raton: CRC Press.  Google Scholar
First citationMacleod, C., McKiernan, G. J., Guthrie, E. J., Farrugia, L. J., Hamprecht, D. W., Macritchie, J. & Hartley, R. C. (2003). J. Org. Chem. 68, 387–401.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarino, J. P., Rubio, M. B., Cao, G. & de Dios, A. (2002). J. Am. Chem. Soc. 124, 13398–13399.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNicolaou, K. C., Li, A. & Edmonds, D. J. (2006). Angew. Chem. Int. Ed. 45, 7086–7090.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS and CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds