organic compounds
Isobutyl 3,5-dinitrobenzoate
aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: zou-pei@163.com
In the structure of the title compound, C11H12N2O6, the molecules are stacked along the b axis without any π–π interactions. The stacked columns are linked together by non-classical intermolecular C—H⋯O interactions,. In the molecule, the nitro groups make dihedral angles of 9.4 (5) and 10.3 (5)° with the benzene ring.
Related literature
For the properties and applications of dinitrobenzoate derivatives, see: Huang et al. (2004); Kagitani et al. (1984); Olive (1979). For the anti-creatinine effects of a series of 3,5-dinitrobenzoic acid see: Yu & Yang (2002). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809010381/pv2148sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809010381/pv2148Isup2.hkl
3,5-Dinitrobenzoylchloride (5200 mg, 23 mmol) was added in iso-butanol (25 ml, 271 mmol) and the mixture was refluxed for 4 h. White product appeared after cooling to room temperature. They were separated and washed with cold water. Single crystals of the title compound were grown by slow evaporation of a methanol solution: colourless needle-shaped crystals were formed after several days.
Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H distances of 0.93 Å(aromatic), 0.98 Å(CH), 0.97 Å(CH2) and 0.96 Å(CH3); Uiso(H) = 1.2Ueq(C) for the aromatic H, CH and CH2; Uiso(H) = 1.5Ueq(C) for CH3.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. |
C11H12N2O6 | F(000) = 560 |
Mr = 268.23 | Dx = 1.431 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 16.666 (3) Å | θ = 9–12° |
b = 4.776 (1) Å | µ = 0.12 mm−1 |
c = 16.678 (3) Å | T = 293 K |
β = 110.30 (3)° | Needle, colourless |
V = 1245.1 (5) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1402 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.061 |
Graphite monochromator | θmax = 25.3°, θmin = 1.5° |
ω/2θ scans | h = 0→20 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→5 |
Tmin = 0.965, Tmax = 0.988 | l = −20→18 |
2348 measured reflections | 3 standard reflections every 200 reflections |
2266 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.225 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.1P)2 + P] where P = (Fo2 + 2Fc2)/3 |
2266 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C11H12N2O6 | V = 1245.1 (5) Å3 |
Mr = 268.23 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 16.666 (3) Å | µ = 0.12 mm−1 |
b = 4.776 (1) Å | T = 293 K |
c = 16.678 (3) Å | 0.30 × 0.20 × 0.10 mm |
β = 110.30 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1402 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.061 |
Tmin = 0.965, Tmax = 0.988 | 3 standard reflections every 200 reflections |
2348 measured reflections | intensity decay: 1% |
2266 independent reflections |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.225 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.25 e Å−3 |
2266 reflections | Δρmin = −0.30 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.17180 (16) | −0.2811 (6) | 0.58690 (17) | 0.0567 (8) | |
O2 | −0.08913 (17) | −0.4218 (7) | 0.51387 (18) | 0.0616 (8) | |
O3 | −0.0648 (2) | 0.3897 (9) | 0.8166 (2) | 0.0933 (13) | |
O4 | 0.0522 (2) | 0.6102 (7) | 0.8340 (2) | 0.0767 (10) | |
O5 | 0.23983 (17) | 0.2979 (6) | 0.68814 (18) | 0.0603 (8) | |
O6 | 0.20462 (18) | −0.0604 (6) | 0.60527 (19) | 0.0637 (9) | |
N1 | −0.0004 (2) | 0.4291 (8) | 0.8000 (2) | 0.0542 (9) | |
N2 | 0.18975 (19) | 0.1116 (7) | 0.6515 (2) | 0.0463 (8) | |
C1 | −0.2813 (3) | −0.6160 (11) | 0.6546 (3) | 0.0745 (14) | |
H1A | −0.2346 | −0.5124 | 0.6936 | 0.112* | |
H1B | −0.2629 | −0.8031 | 0.6491 | 0.112* | |
H1C | −0.3278 | −0.6224 | 0.6761 | 0.112* | |
C2 | −0.3856 (3) | −0.6279 (12) | 0.5060 (3) | 0.0864 (17) | |
H2A | −0.4308 | −0.6444 | 0.5289 | 0.130* | |
H2B | −0.3680 | −0.8112 | 0.4951 | 0.130* | |
H2C | −0.4055 | −0.5237 | 0.4535 | 0.130* | |
C3 | −0.3102 (3) | −0.4769 (9) | 0.5697 (3) | 0.0593 (11) | |
H3A | −0.3289 | −0.2870 | 0.5771 | 0.071* | |
C4 | −0.2420 (3) | −0.4536 (10) | 0.5323 (3) | 0.0645 (12) | |
H4A | −0.2208 | −0.6386 | 0.5264 | 0.077* | |
H4B | −0.2651 | −0.3702 | 0.4759 | 0.077* | |
C5 | −0.1000 (2) | −0.2845 (8) | 0.5687 (2) | 0.0418 (8) | |
C6 | −0.0337 (2) | −0.0901 (7) | 0.6262 (2) | 0.0363 (8) | |
C7 | 0.0447 (2) | −0.0816 (7) | 0.6143 (2) | 0.0388 (8) | |
H7A | 0.0553 | −0.1948 | 0.5736 | 0.047* | |
C8 | 0.1063 (2) | 0.0988 (7) | 0.6641 (2) | 0.0381 (8) | |
C9 | 0.0934 (2) | 0.2683 (7) | 0.7252 (2) | 0.0406 (8) | |
H9A | 0.1356 | 0.3901 | 0.7578 | 0.049* | |
C10 | 0.0157 (2) | 0.2503 (7) | 0.7359 (2) | 0.0407 (8) | |
C11 | −0.0482 (2) | 0.0730 (8) | 0.6876 (2) | 0.0430 (9) | |
H11A | −0.1002 | 0.0641 | 0.6965 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0495 (15) | 0.0679 (19) | 0.0601 (17) | −0.0169 (14) | 0.0283 (13) | −0.0232 (14) |
O2 | 0.0559 (17) | 0.070 (2) | 0.0611 (17) | −0.0124 (15) | 0.0226 (14) | −0.0231 (16) |
O3 | 0.072 (2) | 0.123 (3) | 0.096 (3) | 0.002 (2) | 0.043 (2) | −0.047 (2) |
O4 | 0.093 (2) | 0.066 (2) | 0.070 (2) | −0.0068 (19) | 0.0260 (18) | −0.0222 (18) |
O5 | 0.0550 (16) | 0.0615 (19) | 0.0638 (18) | −0.0203 (15) | 0.0200 (14) | −0.0124 (15) |
O6 | 0.0572 (17) | 0.067 (2) | 0.075 (2) | −0.0002 (15) | 0.0328 (15) | −0.0174 (17) |
N1 | 0.056 (2) | 0.053 (2) | 0.0485 (19) | 0.0094 (18) | 0.0128 (16) | −0.0119 (17) |
N2 | 0.0420 (17) | 0.048 (2) | 0.0478 (18) | 0.0002 (15) | 0.0143 (14) | 0.0031 (16) |
C1 | 0.073 (3) | 0.085 (4) | 0.069 (3) | −0.020 (3) | 0.029 (2) | −0.008 (3) |
C2 | 0.051 (3) | 0.100 (4) | 0.090 (4) | −0.023 (3) | 0.001 (2) | 0.023 (3) |
C3 | 0.052 (2) | 0.054 (3) | 0.073 (3) | −0.004 (2) | 0.022 (2) | 0.006 (2) |
C4 | 0.056 (2) | 0.081 (3) | 0.057 (2) | −0.024 (2) | 0.020 (2) | −0.020 (2) |
C5 | 0.048 (2) | 0.040 (2) | 0.0394 (19) | −0.0065 (17) | 0.0181 (16) | 0.0011 (17) |
C6 | 0.0414 (18) | 0.0324 (18) | 0.0320 (17) | −0.0024 (15) | 0.0088 (14) | −0.0001 (15) |
C7 | 0.0446 (19) | 0.0347 (18) | 0.0377 (18) | 0.0001 (16) | 0.0151 (15) | 0.0015 (15) |
C8 | 0.0384 (18) | 0.0371 (19) | 0.0378 (18) | 0.0030 (15) | 0.0118 (15) | 0.0040 (15) |
C9 | 0.047 (2) | 0.0325 (19) | 0.0378 (18) | −0.0016 (16) | 0.0091 (15) | −0.0001 (15) |
C10 | 0.0456 (19) | 0.038 (2) | 0.0352 (18) | 0.0048 (16) | 0.0095 (15) | −0.0036 (15) |
C11 | 0.0422 (19) | 0.048 (2) | 0.0387 (18) | 0.0011 (17) | 0.0134 (16) | 0.0060 (17) |
O1—C5 | 1.332 (4) | C2—H2C | 0.9600 |
O1—C4 | 1.462 (5) | C3—C4 | 1.479 (5) |
O2—C5 | 1.190 (4) | C3—H3A | 0.9800 |
O3—N1 | 1.213 (4) | C4—H4A | 0.9700 |
O4—N1 | 1.222 (4) | C4—H4B | 0.9700 |
O5—N2 | 1.228 (4) | C5—C6 | 1.505 (5) |
O6—N2 | 1.210 (4) | C6—C11 | 1.373 (5) |
N1—C10 | 1.463 (5) | C6—C7 | 1.390 (5) |
N2—C8 | 1.478 (4) | C7—C8 | 1.377 (5) |
C1—C3 | 1.485 (6) | C7—H7A | 0.9300 |
C1—H1A | 0.9600 | C8—C9 | 1.375 (5) |
C1—H1B | 0.9600 | C9—C10 | 1.369 (5) |
C1—H1C | 0.9600 | C9—H9A | 0.9300 |
C2—C3 | 1.517 (6) | C10—C11 | 1.381 (5) |
C2—H2A | 0.9600 | C11—H11A | 0.9300 |
C2—H2B | 0.9600 | ||
C5—O1—C4 | 116.0 (3) | O1—C4—H4A | 109.6 |
O3—N1—O4 | 123.5 (4) | C3—C4—H4A | 109.6 |
O3—N1—C10 | 118.5 (4) | O1—C4—H4B | 109.6 |
O4—N1—C10 | 117.9 (3) | C3—C4—H4B | 109.6 |
O6—N2—O5 | 123.7 (3) | H4A—C4—H4B | 108.1 |
O6—N2—C8 | 118.3 (3) | O2—C5—O1 | 124.8 (3) |
O5—N2—C8 | 118.0 (3) | O2—C5—C6 | 123.7 (3) |
C3—C1—H1A | 109.5 | O1—C5—C6 | 111.5 (3) |
C3—C1—H1B | 109.5 | C11—C6—C7 | 120.5 (3) |
H1A—C1—H1B | 109.5 | C11—C6—C5 | 123.0 (3) |
C3—C1—H1C | 109.5 | C7—C6—C5 | 116.5 (3) |
H1A—C1—H1C | 109.5 | C8—C7—C6 | 118.2 (3) |
H1B—C1—H1C | 109.5 | C8—C7—H7A | 120.9 |
C3—C2—H2A | 109.5 | C6—C7—H7A | 120.9 |
C3—C2—H2B | 109.5 | C7—C8—C9 | 122.7 (3) |
H2A—C2—H2B | 109.5 | C7—C8—N2 | 118.8 (3) |
C3—C2—H2C | 109.5 | C9—C8—N2 | 118.6 (3) |
H2A—C2—H2C | 109.5 | C10—C9—C8 | 117.3 (3) |
H2B—C2—H2C | 109.5 | C10—C9—H9A | 121.4 |
C4—C3—C1 | 113.2 (4) | C8—C9—H9A | 121.4 |
C4—C3—C2 | 108.1 (4) | C9—C10—C11 | 122.3 (3) |
C1—C3—C2 | 111.8 (4) | C9—C10—N1 | 118.7 (3) |
C4—C3—H3A | 107.9 | C11—C10—N1 | 119.0 (3) |
C1—C3—H3A | 107.9 | C6—C11—C10 | 118.9 (3) |
C2—C3—H3A | 107.9 | C6—C11—H11A | 120.5 |
O1—C4—C3 | 110.2 (3) | C10—C11—H11A | 120.5 |
C5—O1—C4—C3 | 168.4 (4) | O6—N2—C8—C9 | 171.3 (3) |
C1—C3—C4—O1 | −62.2 (5) | O5—N2—C8—C9 | −9.2 (5) |
C2—C3—C4—O1 | 173.4 (4) | C7—C8—C9—C10 | 0.6 (5) |
C4—O1—C5—O2 | −2.2 (6) | N2—C8—C9—C10 | −179.5 (3) |
C4—O1—C5—C6 | 177.4 (3) | C8—C9—C10—C11 | −0.6 (5) |
O2—C5—C6—C11 | 178.1 (4) | C8—C9—C10—N1 | −179.6 (3) |
O1—C5—C6—C11 | −1.5 (5) | O3—N1—C10—C9 | −171.3 (4) |
O2—C5—C6—C7 | −1.8 (5) | O4—N1—C10—C9 | 8.5 (5) |
O1—C5—C6—C7 | 178.6 (3) | O3—N1—C10—C11 | 9.7 (5) |
C11—C6—C7—C8 | −1.5 (5) | O4—N1—C10—C11 | −170.5 (3) |
C5—C6—C7—C8 | 178.4 (3) | C7—C6—C11—C10 | 1.5 (5) |
C6—C7—C8—C9 | 0.4 (5) | C5—C6—C11—C10 | −178.4 (3) |
C6—C7—C8—N2 | −179.5 (3) | C9—C10—C11—C6 | −0.4 (5) |
O6—N2—C8—C7 | −8.8 (5) | N1—C10—C11—C6 | 178.5 (3) |
O5—N2—C8—C7 | 170.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O2i | 0.93 | 2.52 | 3.441 (5) | 168 |
Symmetry code: (i) −x, −y−1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H12N2O6 |
Mr | 268.23 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 16.666 (3), 4.776 (1), 16.678 (3) |
β (°) | 110.30 (3) |
V (Å3) | 1245.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.965, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2348, 2266, 1402 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.225, 1.11 |
No. of reflections | 2266 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.30 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O2i | 0.9300 | 2.5200 | 3.441 (5) | 168.00 |
Symmetry code: (i) −x, −y−1, −z+1. |
Acknowledgements
The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. A. G., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Huang, H. Q., Li, Q., Cai, M. Sh. & Li, Zh. J. (2004). J. Chin. Pharm. Sci. 13, 242–244. CAS Google Scholar
Kagitani, T., Minagawa, M., Nakahara, Y., Kimura, S., Tsubakimoto, T., Oshiumi, R. & Sakano, K. (1984). Patent Jpn Kokai Tokyo Koho JP 60 258 116. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Olive, P. L. (1979). Br. J. Cancer, 40, 89–93. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, J. G. & Yang, D. Z. (2002). Chin. J. Appl. Chem. 19, 858–861. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Due to their biological activities, dinitrobenzoate derivatives are widely used in pharmacology. Dinitrobenzoic acid derivatives are effective in tumour treatment as radiation sensitizers (Kagitani et al., 1984). Moreover, some synthetic dinitrobenzoate compounds have shown useful properties in DNA and oligosaccharide synthesis (Olive, 1979; Huang et al., 2004). Furthermore, a series of 3,5-dinitrobenzoic acid esters has also been synthesized and their anti-creatinine effects have been studied (Yu & Yang, 2002). To study their structures and activities, we report here the crystal structure of the title compound, (I).
The bond lengths and angles in (I) (Fig. 1) are within expected ranges (Allen et al., 1987). The two nitro groups are inclined by 9.4 (5) and 169.7 (5)° to the benzene ring, respectively. Except for atoms C1 and C2, the other non-H atoms of the molecule lie in a plane. In the crystal structure, the molecules are stacked along the b axis, without any π-π interaction. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H···O, details have been given in Table 1.