organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­butyl 3,5-di­nitro­benzoate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: zou-pei@163.com

(Received 14 March 2009; accepted 20 March 2009; online 28 March 2009)

In the structure of the title compound, C11H12N2O6, the mol­ecules are stacked along the b axis without any ππ inter­actions. The stacked columns are linked together by non-classical inter­molecular C—H⋯O inter­actions,. In the molecule, the nitro groups make dihedral angles of 9.4 (5) and 10.3 (5)° with the benzene ring.

Related literature

For the properties and applications of dinitro­benzoate derivatives, see: Huang et al. (2004[Huang, H. Q., Li, Q., Cai, M. Sh. & Li, Zh. J. (2004). J. Chin. Pharm. Sci. 13, 242-244.]); Kagitani et al. (1984[Kagitani, T., Minagawa, M., Nakahara, Y., Kimura, S., Tsubakimoto, T., Oshiumi, R. & Sakano, K. (1984). Patent Jpn Kokai Tokyo Koho JP 60 258 116.]); Olive (1979[Olive, P. L. (1979). Br. J. Cancer, 40, 89-93.]). For the anti-creatinine effects of a series of 3,5-dinitro­benzoic acid esters, see: Yu & Yang (2002[Yu, J. G. & Yang, D. Z. (2002). Chin. J. Appl. Chem. 19, 858-861.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. A. G., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O6

  • Mr = 268.23

  • Monoclinic, P 21 /n

  • a = 16.666 (3) Å

  • b = 4.776 (1) Å

  • c = 16.678 (3) Å

  • β = 110.30 (3)°

  • V = 1245.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.965, Tmax = 0.988

  • 2348 measured reflections

  • 2266 independent reflections

  • 1402 reflections with I > 2σ(I)

  • Rint = 0.061

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.225

  • S = 1.11

  • 2266 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.93 2.52 3.441 (5) 168
Symmetry code: (i) -x, -y-1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to their biological activities, dinitrobenzoate derivatives are widely used in pharmacology. Dinitrobenzoic acid derivatives are effective in tumour treatment as radiation sensitizers (Kagitani et al., 1984). Moreover, some synthetic dinitrobenzoate compounds have shown useful properties in DNA and oligosaccharide synthesis (Olive, 1979; Huang et al., 2004). Furthermore, a series of 3,5-dinitrobenzoic acid esters has also been synthesized and their anti-creatinine effects have been studied (Yu & Yang, 2002). To study their structures and activities, we report here the crystal structure of the title compound, (I).

The bond lengths and angles in (I) (Fig. 1) are within expected ranges (Allen et al., 1987). The two nitro groups are inclined by 9.4 (5) and 169.7 (5)° to the benzene ring, respectively. Except for atoms C1 and C2, the other non-H atoms of the molecule lie in a plane. In the crystal structure, the molecules are stacked along the b axis, without any π-π interaction. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H···O, details have been given in Table 1.

Related literature top

For the properties and applications of dinitrobenzoate derivatives, see: Huang et al. (2004); Kagitani et al. (1984); Olive (1979). For the anti-creatinine effects of a series of 3,5-dinitrobenzoic acid esters, see: Yu & Yang (2002). For bond-length dat, see: Allen et al. (1987).

Experimental top

3,5-Dinitrobenzoylchloride (5200 mg, 23 mmol) was added in iso-butanol (25 ml, 271 mmol) and the mixture was refluxed for 4 h. White product appeared after cooling to room temperature. They were separated and washed with cold water. Single crystals of the title compound were grown by slow evaporation of a methanol solution: colourless needle-shaped crystals were formed after several days.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H distances of 0.93 Å(aromatic), 0.98 Å(CH), 0.97 Å(CH2) and 0.96 Å(CH3); Uiso(H) = 1.2Ueq(C) for the aromatic H, CH and CH2; Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Isobutyl 3,5-dinitrobenzoate top
Crystal data top
C11H12N2O6F(000) = 560
Mr = 268.23Dx = 1.431 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 16.666 (3) Åθ = 9–12°
b = 4.776 (1) ŵ = 0.12 mm1
c = 16.678 (3) ÅT = 293 K
β = 110.30 (3)°Needle, colourless
V = 1245.1 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1402 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 020
Absorption correction: ψ scan
(North et al., 1968)
k = 05
Tmin = 0.965, Tmax = 0.988l = 2018
2348 measured reflections3 standard reflections every 200 reflections
2266 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1P)2 + P]
where P = (Fo2 + 2Fc2)/3
2266 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C11H12N2O6V = 1245.1 (5) Å3
Mr = 268.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.666 (3) ŵ = 0.12 mm1
b = 4.776 (1) ÅT = 293 K
c = 16.678 (3) Å0.30 × 0.20 × 0.10 mm
β = 110.30 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1402 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.061
Tmin = 0.965, Tmax = 0.9883 standard reflections every 200 reflections
2348 measured reflections intensity decay: 1%
2266 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 1.11Δρmax = 0.25 e Å3
2266 reflectionsΔρmin = 0.30 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17180 (16)0.2811 (6)0.58690 (17)0.0567 (8)
O20.08913 (17)0.4218 (7)0.51387 (18)0.0616 (8)
O30.0648 (2)0.3897 (9)0.8166 (2)0.0933 (13)
O40.0522 (2)0.6102 (7)0.8340 (2)0.0767 (10)
O50.23983 (17)0.2979 (6)0.68814 (18)0.0603 (8)
O60.20462 (18)0.0604 (6)0.60527 (19)0.0637 (9)
N10.0004 (2)0.4291 (8)0.8000 (2)0.0542 (9)
N20.18975 (19)0.1116 (7)0.6515 (2)0.0463 (8)
C10.2813 (3)0.6160 (11)0.6546 (3)0.0745 (14)
H1A0.23460.51240.69360.112*
H1B0.26290.80310.64910.112*
H1C0.32780.62240.67610.112*
C20.3856 (3)0.6279 (12)0.5060 (3)0.0864 (17)
H2A0.43080.64440.52890.130*
H2B0.36800.81120.49510.130*
H2C0.40550.52370.45350.130*
C30.3102 (3)0.4769 (9)0.5697 (3)0.0593 (11)
H3A0.32890.28700.57710.071*
C40.2420 (3)0.4536 (10)0.5323 (3)0.0645 (12)
H4A0.22080.63860.52640.077*
H4B0.26510.37020.47590.077*
C50.1000 (2)0.2845 (8)0.5687 (2)0.0418 (8)
C60.0337 (2)0.0901 (7)0.6262 (2)0.0363 (8)
C70.0447 (2)0.0816 (7)0.6143 (2)0.0388 (8)
H7A0.05530.19480.57360.047*
C80.1063 (2)0.0988 (7)0.6641 (2)0.0381 (8)
C90.0934 (2)0.2683 (7)0.7252 (2)0.0406 (8)
H9A0.13560.39010.75780.049*
C100.0157 (2)0.2503 (7)0.7359 (2)0.0407 (8)
C110.0482 (2)0.0730 (8)0.6876 (2)0.0430 (9)
H11A0.10020.06410.69650.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0495 (15)0.0679 (19)0.0601 (17)0.0169 (14)0.0283 (13)0.0232 (14)
O20.0559 (17)0.070 (2)0.0611 (17)0.0124 (15)0.0226 (14)0.0231 (16)
O30.072 (2)0.123 (3)0.096 (3)0.002 (2)0.043 (2)0.047 (2)
O40.093 (2)0.066 (2)0.070 (2)0.0068 (19)0.0260 (18)0.0222 (18)
O50.0550 (16)0.0615 (19)0.0638 (18)0.0203 (15)0.0200 (14)0.0124 (15)
O60.0572 (17)0.067 (2)0.075 (2)0.0002 (15)0.0328 (15)0.0174 (17)
N10.056 (2)0.053 (2)0.0485 (19)0.0094 (18)0.0128 (16)0.0119 (17)
N20.0420 (17)0.048 (2)0.0478 (18)0.0002 (15)0.0143 (14)0.0031 (16)
C10.073 (3)0.085 (4)0.069 (3)0.020 (3)0.029 (2)0.008 (3)
C20.051 (3)0.100 (4)0.090 (4)0.023 (3)0.001 (2)0.023 (3)
C30.052 (2)0.054 (3)0.073 (3)0.004 (2)0.022 (2)0.006 (2)
C40.056 (2)0.081 (3)0.057 (2)0.024 (2)0.020 (2)0.020 (2)
C50.048 (2)0.040 (2)0.0394 (19)0.0065 (17)0.0181 (16)0.0011 (17)
C60.0414 (18)0.0324 (18)0.0320 (17)0.0024 (15)0.0088 (14)0.0001 (15)
C70.0446 (19)0.0347 (18)0.0377 (18)0.0001 (16)0.0151 (15)0.0015 (15)
C80.0384 (18)0.0371 (19)0.0378 (18)0.0030 (15)0.0118 (15)0.0040 (15)
C90.047 (2)0.0325 (19)0.0378 (18)0.0016 (16)0.0091 (15)0.0001 (15)
C100.0456 (19)0.038 (2)0.0352 (18)0.0048 (16)0.0095 (15)0.0036 (15)
C110.0422 (19)0.048 (2)0.0387 (18)0.0011 (17)0.0134 (16)0.0060 (17)
Geometric parameters (Å, º) top
O1—C51.332 (4)C2—H2C0.9600
O1—C41.462 (5)C3—C41.479 (5)
O2—C51.190 (4)C3—H3A0.9800
O3—N11.213 (4)C4—H4A0.9700
O4—N11.222 (4)C4—H4B0.9700
O5—N21.228 (4)C5—C61.505 (5)
O6—N21.210 (4)C6—C111.373 (5)
N1—C101.463 (5)C6—C71.390 (5)
N2—C81.478 (4)C7—C81.377 (5)
C1—C31.485 (6)C7—H7A0.9300
C1—H1A0.9600C8—C91.375 (5)
C1—H1B0.9600C9—C101.369 (5)
C1—H1C0.9600C9—H9A0.9300
C2—C31.517 (6)C10—C111.381 (5)
C2—H2A0.9600C11—H11A0.9300
C2—H2B0.9600
C5—O1—C4116.0 (3)O1—C4—H4A109.6
O3—N1—O4123.5 (4)C3—C4—H4A109.6
O3—N1—C10118.5 (4)O1—C4—H4B109.6
O4—N1—C10117.9 (3)C3—C4—H4B109.6
O6—N2—O5123.7 (3)H4A—C4—H4B108.1
O6—N2—C8118.3 (3)O2—C5—O1124.8 (3)
O5—N2—C8118.0 (3)O2—C5—C6123.7 (3)
C3—C1—H1A109.5O1—C5—C6111.5 (3)
C3—C1—H1B109.5C11—C6—C7120.5 (3)
H1A—C1—H1B109.5C11—C6—C5123.0 (3)
C3—C1—H1C109.5C7—C6—C5116.5 (3)
H1A—C1—H1C109.5C8—C7—C6118.2 (3)
H1B—C1—H1C109.5C8—C7—H7A120.9
C3—C2—H2A109.5C6—C7—H7A120.9
C3—C2—H2B109.5C7—C8—C9122.7 (3)
H2A—C2—H2B109.5C7—C8—N2118.8 (3)
C3—C2—H2C109.5C9—C8—N2118.6 (3)
H2A—C2—H2C109.5C10—C9—C8117.3 (3)
H2B—C2—H2C109.5C10—C9—H9A121.4
C4—C3—C1113.2 (4)C8—C9—H9A121.4
C4—C3—C2108.1 (4)C9—C10—C11122.3 (3)
C1—C3—C2111.8 (4)C9—C10—N1118.7 (3)
C4—C3—H3A107.9C11—C10—N1119.0 (3)
C1—C3—H3A107.9C6—C11—C10118.9 (3)
C2—C3—H3A107.9C6—C11—H11A120.5
O1—C4—C3110.2 (3)C10—C11—H11A120.5
C5—O1—C4—C3168.4 (4)O6—N2—C8—C9171.3 (3)
C1—C3—C4—O162.2 (5)O5—N2—C8—C99.2 (5)
C2—C3—C4—O1173.4 (4)C7—C8—C9—C100.6 (5)
C4—O1—C5—O22.2 (6)N2—C8—C9—C10179.5 (3)
C4—O1—C5—C6177.4 (3)C8—C9—C10—C110.6 (5)
O2—C5—C6—C11178.1 (4)C8—C9—C10—N1179.6 (3)
O1—C5—C6—C111.5 (5)O3—N1—C10—C9171.3 (4)
O2—C5—C6—C71.8 (5)O4—N1—C10—C98.5 (5)
O1—C5—C6—C7178.6 (3)O3—N1—C10—C119.7 (5)
C11—C6—C7—C81.5 (5)O4—N1—C10—C11170.5 (3)
C5—C6—C7—C8178.4 (3)C7—C6—C11—C101.5 (5)
C6—C7—C8—C90.4 (5)C5—C6—C11—C10178.4 (3)
C6—C7—C8—N2179.5 (3)C9—C10—C11—C60.4 (5)
O6—N2—C8—C78.8 (5)N1—C10—C11—C6178.5 (3)
O5—N2—C8—C7170.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.932.523.441 (5)168
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12N2O6
Mr268.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)16.666 (3), 4.776 (1), 16.678 (3)
β (°) 110.30 (3)
V3)1245.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.965, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
2348, 2266, 1402
Rint0.061
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.225, 1.11
No. of reflections2266
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.93002.52003.441 (5)168.00
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. A. G., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHuang, H. Q., Li, Q., Cai, M. Sh. & Li, Zh. J. (2004). J. Chin. Pharm. Sci. 13, 242–244.  CAS Google Scholar
First citationKagitani, T., Minagawa, M., Nakahara, Y., Kimura, S., Tsubakimoto, T., Oshiumi, R. & Sakano, K. (1984). Patent Jpn Kokai Tokyo Koho JP 60 258 116.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOlive, P. L. (1979). Br. J. Cancer, 40, 89–93.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J. G. & Yang, D. Z. (2002). Chin. J. Appl. Chem. 19, 858–861.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds