organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(Di­phenyl­methyl­ene)-2-hy­droxy­benzo­hydrazide

aDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bNo. 1 Middle School of Qufu, 273100, Shandong, People's Republic of China
*Correspondence e-mail: klsz79@163.com

(Received 10 January 2009; accepted 25 February 2009; online 6 March 2009)

In the title compound, C20H16N2O2, intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds are found. The inter­molecular hydrogen bonds link the mol­ecules into an infinite chain along the c axis. The dihedral angles between the aromatic rings are 16.9 (3), 80.8 (3) and 64.6 (3)°

Related literature

For the multiple-coordination environment of 2-hydroxybenzohydrazide and its derivatives, see: Chang (2008[Chang, J.-G. (2008). Acta Cryst. E64, o198.]); Huo et al. (2004[Huo, L.-H., Gao, S., Zhao, H., Zhao, J.-G., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o1538-o1540.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O2

  • Mr = 316.35

  • Tetragonal, I 41 /a

  • a = 16.5157 (9) Å

  • c = 24.401 (3) Å

  • V = 6655.8 (10) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 K

  • 0.31 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.987

  • 17393 measured reflections

  • 2929 independent reflections

  • 1610 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.255

  • S = 1.01

  • 2929 reflections

  • 217 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.86 1.95 2.635 (3) 136
O2—H2A⋯O1i 0.82 1.87 2.688 (3) 172
Symmetry code: (i) [-y+{\script{3\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of 2-hydroxybenzohydrazide and its derivatives are studied because of their multiply coordination environment (Chang, 2008; Huo et al., 2004). They represent a class of highly useful compounds in which the presence of O and N atom renders various hydrogen bonding motifs leading to the formation of versatile architecture in the crystal lattice. As the continue of the aspect, we study the reaction of benzophenone and 2–hydroxybenzohydrazide in the state of refluxing in ethanol.

Herein we report the molecular (Fig. 1) and crystal structures of the title compound, C20H16N2O2, which was characterized by elemental analyses too. In the structure an intramolecular N2—H2B···O2 (Fig. 1) and an intermolecular O2—H2A···O1i (Fig. 2) H–bonds were found. Symmetry code: (i) 3/4-y, 1/4+x, 1/4+z).

Related literature top

For the coordination environment of this molecule, see: Chang (2008); Huo et al. (2004).

Experimental top

Benzophenone and 2–hydroxybenzohydrazide were added to the solvent of ethanol and the mixture was stirred for 4 h at 323 K. After cooling down to the room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum and the solid residue was recrystallized from ether; colourless crystals suitable for X–ray diffraction study were obtained. Yield, 79%. m.p. 463 K. Analysis, calculated for C20H16N2O2: C 79.19, H 5.65, N 4.62; found: C 79.36, H 5.43, N 4.35%. The elemental analyses were performed with a Perkine Elemer PE2400II instrument.

Refinement top

The all H atoms were placed in idealized positions and constrained to ride on their parent atoms, with distances: N—H = 0.86 Å and O—H = 0.82 Å, C—H = 0.93 Å. The Uiso(H) values were set at 1.2Ueq(parent C, N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are shown at 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Intramolecular H–bond shown by dashed line.
[Figure 2] Fig. 2. The one–dimensional chains are formed by the intermolecular H–bonds O2—H2···O1i. Symmetry code: (i) 3/4-y, 1/4+x, 1/4+z.
N'-(Diphenylmethylene)-2-hydroxybenzohydrazide top
Crystal data top
C20H16N2O2Dx = 1.263 Mg m3
Mr = 316.35Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3007 reflections
Hall symbol: -I 4adθ = 2.4–20.0°
a = 16.5157 (9) ŵ = 0.08 mm1
c = 24.401 (3) ÅT = 273 K
V = 6655.8 (10) Å3Block, colourless
Z = 160.31 × 0.25 × 0.19 mm
F(000) = 2672
Data collection top
Bruker SMART CCD area-detector
diffractometer
2929 independent reflections
Radiation source: Fine–focus sealed tube1610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1917
Tmin = 0.972, Tmax = 0.987k = 1919
17393 measured reflectionsl = 2428
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: Geom
wR(F2) = 0.255H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.158P)2 + 0.5238P]
where P = (Fo2 + 2Fc2)/3
2929 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.53 e Å3
7 restraintsΔρmin = 0.47 e Å3
Crystal data top
C20H16N2O2Z = 16
Mr = 316.35Mo Kα radiation
Tetragonal, I41/aµ = 0.08 mm1
a = 16.5157 (9) ÅT = 273 K
c = 24.401 (3) Å0.31 × 0.25 × 0.19 mm
V = 6655.8 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2929 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1610 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.987Rint = 0.096
17393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0727 restraints
wR(F2) = 0.255H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
2929 reflectionsΔρmin = 0.47 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19770 (16)0.48883 (16)0.91131 (10)0.0673 (8)
N20.20636 (16)0.53442 (16)0.95782 (10)0.0660 (8)
H2B0.18280.51970.98760.079*
O10.28234 (15)0.62777 (14)0.91455 (9)0.0834 (8)
O20.18133 (14)0.55740 (15)1.06333 (8)0.0770 (7)
H2A0.16810.54931.09530.115*
C10.1847 (2)0.3933 (2)0.81748 (16)0.0892 (12)
H10.21220.44220.81480.107*
C20.1798 (3)0.3438 (3)0.77280 (18)0.1029 (13)
H20.20360.35960.73990.123*
C30.1404 (3)0.2713 (3)0.7760 (2)0.1021 (14)
H30.13820.23730.74560.123*
C40.1046 (3)0.2494 (3)0.8232 (2)0.1024 (14)
H40.07650.20070.82510.123*
C50.1094 (2)0.2984 (2)0.86910 (18)0.0894 (12)
H50.08550.28190.90180.107*
C60.1494 (2)0.3717 (2)0.86662 (14)0.0696 (9)
C70.15649 (19)0.4228 (2)0.91578 (13)0.0655 (9)
C80.1194 (2)0.3957 (2)0.96790 (14)0.0708 (9)
C90.0389 (3)0.4050 (3)0.9779 (2)0.1276 (19)
H90.00550.42800.95150.153*
C100.0067 (4)0.3801 (3)1.0278 (3)0.1355 (17)
H100.04880.38351.03410.163*
C110.0576 (4)0.3502 (4)1.0679 (2)0.150 (2)
H110.03680.33851.10240.180*
C120.1362 (4)0.3380 (3)1.0581 (2)0.1236 (18)
H120.16930.31451.08450.148*
C130.1676 (3)0.3610 (3)1.00770 (17)0.0944 (13)
H130.22230.35281.00060.113*
C140.2516 (2)0.6023 (2)0.95709 (12)0.0625 (8)
C150.26762 (18)0.64251 (19)1.01038 (12)0.0585 (8)
C160.2366 (2)0.6184 (2)1.06129 (12)0.0648 (9)
C170.2630 (3)0.6562 (3)1.10856 (14)0.0864 (11)
H170.24360.63891.14230.104*
C180.3167 (3)0.7181 (3)1.10648 (16)0.0967 (13)
H180.33340.74301.13880.116*
C190.3466 (2)0.7445 (3)1.05717 (16)0.0904 (12)
H190.38300.78741.05570.108*
C200.3218 (2)0.7066 (2)1.01018 (14)0.0752 (10)
H200.34220.72460.97680.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0836 (19)0.0705 (17)0.0477 (15)0.0095 (15)0.0066 (13)0.0014 (12)
N20.0788 (18)0.0773 (18)0.0418 (14)0.0052 (14)0.0106 (12)0.0011 (12)
O10.1105 (19)0.0922 (17)0.0476 (13)0.0258 (14)0.0190 (12)0.0067 (12)
O20.0928 (17)0.0963 (17)0.0417 (12)0.0020 (14)0.0095 (11)0.0066 (11)
C10.107 (3)0.090 (3)0.070 (3)0.021 (2)0.003 (2)0.007 (2)
C20.128 (4)0.108 (3)0.073 (3)0.017 (3)0.003 (2)0.024 (2)
C30.112 (3)0.099 (3)0.096 (3)0.005 (3)0.015 (3)0.027 (3)
C40.116 (3)0.080 (3)0.111 (4)0.016 (2)0.005 (3)0.015 (3)
C50.097 (3)0.080 (3)0.092 (3)0.011 (2)0.003 (2)0.001 (2)
C60.070 (2)0.069 (2)0.070 (2)0.0040 (17)0.0008 (17)0.0007 (17)
C70.066 (2)0.070 (2)0.060 (2)0.0028 (17)0.0038 (15)0.0030 (16)
C80.070 (2)0.067 (2)0.076 (2)0.0049 (17)0.0110 (17)0.0075 (17)
C90.086 (3)0.126 (4)0.171 (4)0.035 (3)0.035 (3)0.065 (3)
C100.1334 (19)0.1375 (19)0.1356 (19)0.0024 (10)0.0091 (10)0.0072 (10)
C110.153 (5)0.165 (5)0.132 (5)0.029 (4)0.076 (4)0.063 (4)
C120.145 (5)0.131 (4)0.095 (4)0.007 (3)0.021 (3)0.047 (3)
C130.085 (3)0.114 (3)0.084 (3)0.004 (2)0.010 (2)0.030 (2)
C140.0672 (19)0.072 (2)0.0485 (18)0.0027 (17)0.0073 (15)0.0005 (15)
C150.0619 (18)0.0671 (19)0.0464 (17)0.0090 (16)0.0051 (13)0.0028 (14)
C160.069 (2)0.078 (2)0.0472 (18)0.0135 (18)0.0011 (15)0.0014 (15)
C170.110 (3)0.104 (3)0.0447 (19)0.004 (3)0.0011 (19)0.0018 (18)
C180.115 (3)0.112 (3)0.063 (3)0.003 (3)0.008 (2)0.021 (2)
C190.098 (3)0.097 (3)0.076 (3)0.011 (2)0.001 (2)0.017 (2)
C200.080 (2)0.088 (2)0.058 (2)0.005 (2)0.0109 (17)0.0070 (18)
Geometric parameters (Å, º) top
N1—C71.289 (4)C8—C131.380 (5)
N1—N21.370 (3)C9—C101.390 (7)
N2—C141.347 (4)C9—H90.9300
N2—H2B0.8600C10—C111.382 (8)
O1—C141.230 (4)C10—H100.9300
O2—C161.361 (4)C11—C121.336 (7)
O2—H2A0.8200C11—H110.9300
C1—C21.365 (5)C12—C131.387 (6)
C1—C61.380 (5)C12—H120.9300
C1—H10.9300C13—H130.9300
C2—C31.365 (6)C14—C151.484 (4)
C2—H20.9300C15—C201.387 (5)
C3—C41.345 (6)C15—C161.401 (4)
C3—H30.9300C16—C171.382 (5)
C4—C51.384 (6)C17—C181.354 (6)
C4—H40.9300C17—H170.9300
C5—C61.381 (5)C18—C191.372 (5)
C5—H50.9300C18—H180.9300
C6—C71.472 (4)C19—C201.369 (5)
C7—C81.481 (4)C19—H190.9300
C8—C91.360 (5)C20—H200.9300
C7—N1—N2116.7 (3)C11—C10—H10120.3
C14—N2—N1120.3 (2)C9—C10—H10120.3
C14—N2—H2B119.9C12—C11—C10121.2 (5)
N1—N2—H2B119.9C12—C11—H11119.4
C16—O2—H2A109.5C10—C11—H11119.4
C2—C1—C6121.0 (4)C11—C12—C13118.8 (5)
C2—C1—H1119.5C11—C12—H12120.6
C6—C1—H1119.5C13—C12—H12120.6
C1—C2—C3120.5 (4)C8—C13—C12121.4 (4)
C1—C2—H2119.7C8—C13—H13119.3
C3—C2—H2119.7C12—C13—H13119.3
C4—C3—C2119.6 (4)O1—C14—N2121.7 (3)
C4—C3—H3120.2O1—C14—C15120.9 (3)
C2—C3—H3120.2N2—C14—C15117.4 (3)
C3—C4—C5120.7 (4)C20—C15—C16117.1 (3)
C3—C4—H4119.6C20—C15—C14117.0 (3)
C5—C4—H4119.6C16—C15—C14125.8 (3)
C6—C5—C4120.3 (4)O2—C16—C17121.1 (3)
C6—C5—H5119.9O2—C16—C15119.2 (3)
C4—C5—H5119.9C17—C16—C15119.7 (3)
C1—C6—C5117.8 (3)C18—C17—C16121.1 (4)
C1—C6—C7121.8 (3)C18—C17—H17119.5
C5—C6—C7120.4 (3)C16—C17—H17119.5
N1—C7—C6117.3 (3)C17—C18—C19120.6 (4)
N1—C7—C8123.2 (3)C17—C18—H18119.7
C6—C7—C8119.5 (3)C19—C18—H18119.7
C9—C8—C13118.9 (4)C20—C19—C18118.8 (4)
C9—C8—C7121.6 (4)C20—C19—H19120.6
C13—C8—C7119.4 (3)C18—C19—H19120.6
C8—C9—C10119.9 (5)C19—C20—C15122.6 (3)
C8—C9—H9120.0C19—C20—H20118.7
C10—C9—H9120.0C15—C20—H20118.7
C11—C10—C9119.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.861.952.635 (3)136
O2—H2A···O1i0.821.872.688 (3)172
Symmetry code: (i) y+3/4, x+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC20H16N2O2
Mr316.35
Crystal system, space groupTetragonal, I41/a
Temperature (K)273
a, c (Å)16.5157 (9), 24.401 (3)
V3)6655.8 (10)
Z16
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17393, 2929, 1610
Rint0.096
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.255, 1.01
No. of reflections2929
No. of parameters217
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.47

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.861.952.635 (3)135.8
O2—H2A···O1i0.821.872.688 (3)171.6
Symmetry code: (i) y+3/4, x+1/4, z+1/4.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University (No. Y07–2–15) for financial support.

References

First citationChang, J.-G. (2008). Acta Cryst. E64, o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuo, L.-H., Gao, S., Zhao, H., Zhao, J.-G., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, o1538–o1540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds