organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-chloro-6-[(E)-(2-chloro­phen­yl)imino­meth­yl]phenol

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: zhangxinli6008@163.com

(Received 20 February 2009; accepted 26 February 2009; online 6 March 2009)

The title compound, C13H8BrCl2NO, was obtained by reaction of 3-bromo-5-chloro­salicylaldehyde and 2-chloro­benzenamine in methanol. The mol­ecule displays an E configuration with respect to the imine C=N double bond. The dihedral angle between the two benzene rings is 4.57 (11)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O hydrogen-bonding inter­actions into zigzag chains running parallel to the b axis. Inter­molecular Br⋯Cl [3.5289 (11) Å] and Cl⋯Cl [3.5042 (12) Å] inter­actions are present.

Related literature

For the biological activities of Schiff base complexes, see: Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547-2554.]); Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141-148.]). For halogen–halogen inter­actions, see: Saruma et al. (1986[Saruma, J. A. R. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222-228.]); Moorthy et al. (2002[Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530-6531.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8BrCl2NO

  • Mr = 345.01

  • Monoclinic, P 21 /c

  • a = 8.4299 (10) Å

  • b = 14.0115 (16) Å

  • c = 11.4194 (14) Å

  • β = 104.5120 (10)°

  • V = 1305.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 298 K

  • 0.45 × 0.38 × 0.36 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.230, Tmax = 0.279

  • 6450 measured reflections

  • 2295 independent reflections

  • 1726 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.077

  • S = 1.03

  • 2295 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.586 (3) 147
C11—H11⋯O1i 0.93 2.56 3.324 (5) 139
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes are of great interests for inorganic and bioinorganic chemistry. To the best of our knowledge, in the past two decades Schiff base ligands have demonstrated significant biological activities and new examples have been tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The molecular structure and crystal packing of the title compound are illustrated in Fig. 1 and 2, respectively. The C1N1 bond distance (1.279 (4) Å) is shorter than expected. The molecule is not strictly planar, the maximum deviations from the planarity are 0.199 (5) and 0.162 (5) for atoms Cl1 and Cl2. The dihedral angle formed by the benzene rings is 4.57 (11)°. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). In the crystal packing, the molecules are linked via intermolecular C—H···O hydrogen bonds into zig-zag chains running parallel to the b axis. In addition, intermolecular Br···Cl and Cl···Cl interactions are observed (Fig. 2) falling in the typical range of halogen-halogen interactions (Saruma & Desiraju, 1986, Moorthy et al., 2002): Br1···Cl1i = 3.5289 (11) Å; Cl1···Cl2ii = 3.5042 (12) Å; symmetry codes: (i) x, 3/2-y, -1/2+z; (ii) 1+x, y, 1+z.

Related literature top

For the biological activities of Schiff base complexes, see: Cukurovali et al. (2002); Tarafder et al. (2002); Ali et al. (2002). For halogen–halogen interactions, see: Saruma et al. (1986); Moorthy et al. (2002).

Experimental top

3-Bromo-5-chlorosalicylaldehyde(0.1 mmol, 23.6 mg) and 2-chlorobenzenamine (0.1 mmol, 12.8 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 1 h and then filtered. After allowing the filtrate to stand in air for 7 d, yellow block-shaped crystals of the title compound were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 52%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, O—H = 0.82 Å and Uiso(H) = = 1.2 Ueq(C, O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dashed line represents a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Halogen-halogen interactions are shown as dashed lines.
2-Bromo-4-chloro-6-[(E)-(2-chlorophenyl)iminomethyl]phenol top
Crystal data top
C13H8BrCl2NOF(000) = 680
Mr = 345.01Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2353 reflections
a = 8.4299 (10) Åθ = 2.4–25.2°
b = 14.0115 (16) ŵ = 3.54 mm1
c = 11.4194 (14) ÅT = 298 K
β = 104.512 (1)°Block, yellow
V = 1305.8 (3) Å30.45 × 0.38 × 0.36 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2295 independent reflections
Radiation source: fine-focus sealed tube1726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 109
Tmin = 0.230, Tmax = 0.279k = 1416
6450 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.9771P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2295 reflectionsΔρmax = 0.39 e Å3
164 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0127 (8)
Crystal data top
C13H8BrCl2NOV = 1305.8 (3) Å3
Mr = 345.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4299 (10) ŵ = 3.54 mm1
b = 14.0115 (16) ÅT = 298 K
c = 11.4194 (14) Å0.45 × 0.38 × 0.36 mm
β = 104.512 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2295 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1726 reflections with I > 2σ(I)
Tmin = 0.230, Tmax = 0.279Rint = 0.038
6450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
2295 reflectionsΔρmin = 0.58 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54350 (5)0.75675 (2)0.54203 (4)0.06096 (18)
Cl10.70198 (11)0.53128 (7)0.95100 (8)0.0596 (3)
Cl20.01427 (12)0.49417 (8)0.22925 (8)0.0767 (3)
N10.1581 (3)0.43674 (18)0.4723 (2)0.0434 (7)
O10.3040 (3)0.59685 (15)0.45663 (19)0.0500 (6)
H10.23860.55320.43440.075*
C10.2481 (4)0.4266 (2)0.5798 (3)0.0436 (8)
H1A0.23590.37250.62380.052*
C20.3687 (4)0.4978 (2)0.6346 (3)0.0381 (7)
C30.3916 (4)0.5800 (2)0.5697 (3)0.0387 (7)
C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)
C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)
H50.68600.67440.77770.055*
C60.5809 (4)0.5499 (2)0.8042 (3)0.0453 (8)
C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)
H70.44920.42960.79500.052*
C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)
C90.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)
C100.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)
H100.21220.33620.15240.089*
C110.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)
H110.25500.19310.24030.098*
C120.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)
H120.11450.15890.43490.090*
C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)
H130.07110.26770.54400.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0721 (3)0.0385 (2)0.0755 (3)0.00233 (18)0.0246 (2)0.00929 (18)
Cl10.0696 (6)0.0611 (6)0.0377 (5)0.0104 (5)0.0059 (4)0.0064 (4)
Cl20.0649 (6)0.1111 (9)0.0489 (6)0.0086 (6)0.0043 (5)0.0204 (6)
N10.0443 (15)0.0433 (15)0.0400 (16)0.0012 (12)0.0058 (13)0.0021 (13)
O10.0568 (14)0.0463 (13)0.0419 (14)0.0019 (11)0.0033 (11)0.0102 (11)
C10.053 (2)0.0336 (17)0.045 (2)0.0022 (15)0.0139 (17)0.0005 (15)
C20.0456 (18)0.0347 (16)0.0339 (16)0.0025 (14)0.0100 (14)0.0008 (14)
C30.0413 (18)0.0372 (17)0.0376 (18)0.0075 (14)0.0100 (15)0.0012 (14)
C40.0472 (19)0.0302 (16)0.051 (2)0.0046 (14)0.0159 (16)0.0037 (14)
C50.0457 (19)0.0396 (18)0.051 (2)0.0001 (15)0.0078 (17)0.0093 (16)
C60.052 (2)0.0444 (19)0.0365 (18)0.0114 (16)0.0050 (15)0.0022 (15)
C70.056 (2)0.0365 (17)0.0375 (18)0.0046 (16)0.0096 (16)0.0017 (15)
C80.0420 (18)0.048 (2)0.047 (2)0.0008 (15)0.0108 (16)0.0116 (16)
C90.042 (2)0.073 (2)0.043 (2)0.0002 (18)0.0108 (16)0.0120 (18)
C100.057 (2)0.111 (4)0.052 (2)0.013 (2)0.011 (2)0.029 (3)
C110.066 (3)0.088 (3)0.091 (4)0.021 (2)0.020 (3)0.052 (3)
C120.073 (3)0.055 (2)0.099 (4)0.018 (2)0.023 (3)0.022 (3)
C130.065 (2)0.051 (2)0.065 (3)0.0089 (19)0.006 (2)0.0048 (19)
Geometric parameters (Å, º) top
Br1—C41.885 (3)C5—H50.9300
Cl1—C61.750 (3)C6—C71.373 (5)
Cl2—C91.736 (4)C7—H70.9300
N1—C11.279 (4)C8—C131.381 (5)
N1—C81.409 (4)C8—C91.390 (5)
O1—C31.338 (3)C9—C101.377 (5)
O1—H10.8200C10—C111.379 (6)
C1—C21.449 (4)C10—H100.9300
C1—H1A0.9300C11—C121.364 (7)
C2—C71.394 (4)C11—H110.9300
C2—C31.409 (4)C12—C131.388 (5)
C3—C41.394 (4)C12—H120.9300
C4—C51.381 (4)C13—H130.9300
C5—C61.378 (4)
C1—N1—C8123.1 (3)C6—C7—H7120.0
C3—O1—H1109.5C2—C7—H7120.0
N1—C1—C2121.4 (3)C13—C8—C9117.8 (3)
N1—C1—H1A119.3C13—C8—N1125.0 (3)
C2—C1—H1A119.3C9—C8—N1117.2 (3)
C7—C2—C3119.9 (3)C10—C9—C8121.4 (4)
C7—C2—C1119.5 (3)C10—C9—Cl2118.9 (3)
C3—C2—C1120.6 (3)C8—C9—Cl2119.7 (3)
O1—C3—C4119.2 (3)C9—C10—C11119.5 (4)
O1—C3—C2122.4 (3)C9—C10—H10120.3
C4—C3—C2118.3 (3)C11—C10—H10120.3
C5—C4—C3121.2 (3)C12—C11—C10120.3 (4)
C5—C4—Br1119.4 (2)C12—C11—H11119.8
C3—C4—Br1119.4 (2)C10—C11—H11119.8
C6—C5—C4119.6 (3)C11—C12—C13119.9 (4)
C6—C5—H5120.2C11—C12—H12120.1
C4—C5—H5120.2C13—C12—H12120.1
C7—C6—C5120.9 (3)C8—C13—C12121.1 (4)
C7—C6—Cl1119.8 (3)C8—C13—H13119.5
C5—C6—Cl1119.3 (3)C12—C13—H13119.5
C6—C7—C2120.1 (3)
C8—N1—C1—C2177.5 (3)Cl1—C6—C7—C2179.4 (2)
N1—C1—C2—C7179.9 (3)C3—C2—C7—C60.2 (5)
N1—C1—C2—C30.8 (5)C1—C2—C7—C6178.9 (3)
C7—C2—C3—O1179.6 (3)C1—N1—C8—C130.1 (5)
C1—C2—C3—O10.6 (4)C1—N1—C8—C9178.6 (3)
C7—C2—C3—C40.0 (4)C13—C8—C9—C100.4 (5)
C1—C2—C3—C4179.1 (3)N1—C8—C9—C10178.4 (3)
O1—C3—C4—C5179.1 (3)C13—C8—C9—Cl2178.9 (3)
C2—C3—C4—C50.6 (4)N1—C8—C9—Cl22.3 (4)
O1—C3—C4—Br10.8 (4)C8—C9—C10—C110.0 (6)
C2—C3—C4—Br1179.6 (2)Cl2—C9—C10—C11179.3 (3)
C3—C4—C5—C61.0 (5)C9—C10—C11—C120.3 (6)
Br1—C4—C5—C6179.2 (2)C10—C11—C12—C130.1 (7)
C4—C5—C6—C70.8 (5)C9—C8—C13—C120.6 (6)
C4—C5—C6—Cl1180.0 (2)N1—C8—C13—C12178.1 (3)
C5—C6—C7—C20.2 (5)C11—C12—C13—C80.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.586 (3)147
C11—H11···O1i0.932.563.324 (5)139
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8BrCl2NO
Mr345.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.4299 (10), 14.0115 (16), 11.4194 (14)
β (°) 104.512 (1)
V3)1305.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.45 × 0.38 × 0.36
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.230, 0.279
No. of measured, independent and
observed [I > 2σ(I)] reflections
6450, 2295, 1726
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.03
No. of reflections2295
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.58

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.586 (3)147.0
C11—H11···O1i0.932.563.324 (5)139
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The author gratefully acknowledge financial support for research project No. 08JZ09 from the Phytochemistry Key Laboratory of Shaanxi Province.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141–148.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationMoorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaruma, J. A. R. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222–228.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds