organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o821-o822

(E)-N′-(4-Bromo­benzyl­­idene)-p-toluene­sulfonohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran, and cDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 5 March 2009; accepted 17 March 2009; online 25 March 2009)

In the title compound, C14H13BrN2O2S, a novel sulfonamide derivative, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link neighbouring mol­ecules into different dimers along the b axis, generating R22(8) and R22(16) ring motifs. The dihedral angle between the benzene rings is 82.39 (13)°. The crystal structure is further stabilized by inter­molecular ππ stacking inter­actions [centroid–centroid distances = 3.867 (2)–3.9548 (8) Å].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures and applications, see, for example: Kia et al. (2008a[Kia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341.],b[Kia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424.]); Tabatabaee et al. (2007[Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099-o2100.]); Ali et al. (2007[Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617-o1618.]); Tierney et al. 2006[Tierney, M. S. Jr, McPhee, J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1-50. New York: McGraw-Hill Medical.]; Krygowski et al. (1998[Krygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289-12292.]); Mehrabi et al. (2008[Mehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.]); Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13BrN2O2S

  • Mr = 353.23

  • Triclinic, [P \overline 1]

  • a = 5.9565 (3) Å

  • b = 9.4005 (3) Å

  • c = 12.8020 (6) Å

  • α = 97.153 (2)°

  • β = 96.350 (2)°

  • γ = 92.125 (1)°

  • V = 705.95 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.06 mm−1

  • T = 100 K

  • 0.57 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.276, Tmax = 0.819

  • 18030 measured reflections

  • 5040 independent reflections

  • 4098 reflections with I > 2˘I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.11

  • 5040 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.85 (4) 2.06 (4) 2.902 (3) 171 (4)
C14—H14A⋯O1ii 0.98 2.57 3.420 (3) 145
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides were the first class of antimicrobial agents to be discovered. They inhibit dihydropteroate synthetase in the bacterial folic acid pathway. Although their clinical role has diminished, they are still useful in certain situations, because of its efficacy and low cost (Krygowski et al., 1998). Sulfonamides (sulfanilamide, sulfamethoxazole, sulfafurazole) are structural analogues of p-aminobenzoic acid (PABA) and compete with PABA to block its conversion to dihydrofolic acid. These agents are generally used in combination with other drugs (usually sulfonamides) to prevent or treat a number of bacterial and parasitic infections (Tierney et al., 2006). Because of the above impotrtant features, we report the crystal structure of the title compound.

The title compund (Fig. 1), is a novel sulfonamide derivative. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related staructures (Kia et al. 2008a,b; Mehrabi et al., 2008; Ali et al. 2007). Intermolecular N—H···O and C—H···O hydrogen bonds link neighbouring molecules by R22(8) and R22(16) ring motifs (Bernstein et al., 1995), respectively, into different dimers along the b axis. The dihedral angle between the two benzene rings is 82.39 (13)°. The crystal structure is further stabilized by intermolecular π-π stacking interactions [Cg1···Cg1 iii = 3.9319 (15) and Cg2···Cg2iv = 3.8677 (16) Å; the perpendicular distances are 3.6548 (10) and 3.6189 (11) Å, respectively. Symmetry codes: (iii) -x, 2 - y, 1 - z; (iv) 2 - x, 1 - y, 2 - z].

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and applications, see, for example: Kia et al. (2008a,b); Tabatabaee et al. (2007); Ali et al. (2007); Tierney et al. 2006; Krygowski et al. (1998); Mehrabi et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For related literature, see: Kayser et al. (2004).

Experimental top

p-Tosylhydrazine (2 mmol) was added to a 50 ml refluxing ethanolic solution of 4-bromobenzaldehyde (2 mmol). The mixture was stirred for 2 h. After cooling, the colorless crystalline solid was isolated by filtration, washed with cold ethanol, and re-crystallized from ethanol.

Refinement top

H atom bound to N1 was located from the difference Fourier map and refined freely; see Table 1. The rest of the hydrogen atoms were positioned geometrically and refined as riding model. A rotating group model was used for the methyl group. The highest peak (0.63 e.Å-3) is located 1.77 Å from H2A and the deepest hole (-0.56 e.Å-3) is located 1.47 Å from H2A. The crystal structure was twinned by a pseudo-twofold rotation about (0 1 0) with a refined BASF ratio of 0.115 (1)/0.885 (1).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing linking of different dimers along the b axis through N—H···O and C—H···O interactions. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-(4-Bromobenzylidene)-p-toluenesulfonohydrazide top
Crystal data top
C14H13BrN2O2SZ = 2
Mr = 353.23F(000) = 356
Triclinic, P1Dx = 1.662 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9565 (3) ÅCell parameters from 7222 reflections
b = 9.4005 (3) Åθ = 2.5–34.1°
c = 12.8020 (6) ŵ = 3.06 mm1
α = 97.153 (2)°T = 100 K
β = 96.350 (2)°Block, colourless
γ = 92.125 (1)°0.57 × 0.15 × 0.07 mm
V = 705.95 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5040 independent reflections
Radiation source: fine-focus sealed tube4098 reflections with I > 2˘I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 32.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 98
Tmin = 0.276, Tmax = 0.819k = 1414
18030 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.0631P]
where P = (Fo2 + 2Fc2)/3
5040 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C14H13BrN2O2Sγ = 92.125 (1)°
Mr = 353.23V = 705.95 (5) Å3
Triclinic, P1Z = 2
a = 5.9565 (3) ÅMo Kα radiation
b = 9.4005 (3) ŵ = 3.06 mm1
c = 12.8020 (6) ÅT = 100 K
α = 97.153 (2)°0.57 × 0.15 × 0.07 mm
β = 96.350 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4098 reflections with I > 2˘I)
Tmin = 0.276, Tmax = 0.819Rint = 0.034
18030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.63 e Å3
5040 reflectionsΔρmin = 0.56 e Å3
187 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81285 (5)0.24366 (3)0.11229 (2)0.02400 (8)
S10.25512 (10)0.69735 (6)0.50609 (4)0.01269 (11)
O10.1164 (3)0.66003 (19)0.58555 (14)0.0166 (3)
O20.4777 (3)0.76093 (19)0.53840 (15)0.0171 (3)
N10.2703 (4)0.5426 (2)0.43423 (17)0.0147 (4)
N20.3865 (4)0.5374 (2)0.34562 (16)0.0149 (4)
C10.1178 (4)0.7666 (3)0.3846 (2)0.0162 (4)
H1A0.18950.68300.40340.019*
C20.2334 (4)0.8507 (3)0.3168 (2)0.0187 (5)
H2A0.38510.82310.28840.022*
C30.1313 (5)0.9747 (3)0.2894 (2)0.0179 (5)
C40.0912 (5)1.0145 (3)0.3328 (2)0.0194 (5)
H4A0.16141.10000.31620.023*
C50.2112 (4)0.9315 (3)0.3994 (2)0.0162 (4)
H5A0.36320.95870.42750.019*
C60.1059 (4)0.8075 (2)0.42462 (19)0.0139 (4)
C70.3238 (4)0.4296 (3)0.2753 (2)0.0159 (4)
H7A0.19800.36950.28500.019*
C80.4385 (4)0.3958 (3)0.18089 (19)0.0156 (4)
C90.3420 (5)0.2868 (3)0.1030 (2)0.0190 (5)
H9A0.20050.24170.11060.023*
C100.4502 (5)0.2435 (3)0.0144 (2)0.0208 (5)
H10A0.38330.16990.03870.025*
C110.6578 (4)0.3098 (3)0.0051 (2)0.0176 (5)
C120.7559 (5)0.4195 (3)0.0805 (2)0.0196 (5)
H12A0.89710.46460.07220.023*
C130.6460 (5)0.4627 (3)0.1682 (2)0.0180 (5)
H13A0.71190.53810.22000.022*
C140.2579 (5)1.0639 (3)0.2146 (2)0.0255 (6)
H14A0.25041.16430.24710.038*
H14B0.41641.02820.20000.038*
H14C0.18931.05720.14810.038*
H1N10.160 (6)0.483 (4)0.436 (3)0.020 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02205 (14)0.03319 (15)0.01596 (12)0.00426 (11)0.00449 (10)0.00286 (10)
S10.0128 (3)0.0121 (2)0.0130 (2)0.00060 (19)0.0009 (2)0.00153 (18)
O10.0189 (9)0.0168 (8)0.0144 (8)0.0017 (7)0.0046 (7)0.0014 (6)
O20.0138 (8)0.0154 (8)0.0213 (9)0.0018 (6)0.0020 (7)0.0039 (6)
N10.0160 (10)0.0117 (8)0.0167 (9)0.0009 (7)0.0047 (8)0.0009 (7)
N20.0151 (10)0.0159 (9)0.0141 (9)0.0022 (7)0.0030 (7)0.0020 (7)
C10.0137 (11)0.0157 (10)0.0186 (11)0.0015 (8)0.0005 (9)0.0017 (8)
C20.0155 (11)0.0206 (11)0.0190 (11)0.0027 (9)0.0012 (9)0.0010 (9)
C30.0232 (13)0.0135 (10)0.0158 (10)0.0046 (9)0.0007 (9)0.0011 (8)
C40.0237 (13)0.0123 (10)0.0219 (12)0.0007 (9)0.0014 (10)0.0027 (9)
C50.0166 (11)0.0138 (10)0.0174 (11)0.0009 (8)0.0007 (9)0.0006 (8)
C60.0150 (10)0.0131 (9)0.0136 (10)0.0004 (8)0.0020 (8)0.0017 (8)
C70.0154 (11)0.0151 (10)0.0178 (11)0.0011 (8)0.0029 (9)0.0031 (8)
C80.0159 (11)0.0159 (10)0.0154 (10)0.0034 (8)0.0011 (9)0.0036 (8)
C90.0168 (12)0.0195 (11)0.0202 (12)0.0015 (9)0.0013 (9)0.0007 (9)
C100.0207 (13)0.0228 (12)0.0169 (11)0.0010 (10)0.0005 (10)0.0033 (9)
C110.0175 (11)0.0214 (11)0.0142 (10)0.0045 (9)0.0022 (9)0.0023 (9)
C120.0188 (12)0.0212 (11)0.0197 (12)0.0010 (9)0.0055 (10)0.0037 (9)
C130.0195 (12)0.0170 (11)0.0172 (11)0.0014 (9)0.0028 (9)0.0008 (9)
C140.0335 (16)0.0178 (11)0.0226 (13)0.0073 (11)0.0081 (11)0.0010 (9)
Geometric parameters (Å, º) top
Br1—C111.901 (2)C5—C61.393 (3)
S1—O21.4297 (19)C5—H5A0.9500
S1—O11.4469 (18)C7—C81.460 (3)
S1—N11.633 (2)C7—H7A0.9500
S1—C61.756 (2)C8—C91.396 (4)
N1—N21.389 (3)C8—C131.400 (4)
N1—H1N10.85 (3)C9—C101.390 (4)
N2—C71.283 (3)C9—H9A0.9500
C1—C21.390 (3)C10—C111.388 (4)
C1—C61.395 (3)C10—H10A0.9500
C1—H1A0.9500C11—C121.385 (4)
C2—C31.396 (4)C12—C131.387 (4)
C2—H2A0.9500C12—H12A0.9500
C3—C41.398 (4)C13—H13A0.9500
C3—C141.509 (4)C14—H14A0.9800
C4—C51.386 (4)C14—H14B0.9800
C4—H4A0.9500C14—H14C0.9800
O2—S1—O1119.47 (11)N2—C7—C8122.5 (2)
O2—S1—N1109.68 (11)N2—C7—H7A118.8
O1—S1—N1102.07 (11)C8—C7—H7A118.8
O2—S1—C6108.68 (11)C9—C8—C13119.0 (2)
O1—S1—C6109.36 (11)C9—C8—C7118.2 (2)
N1—S1—C6106.81 (11)C13—C8—C7122.7 (2)
N2—N1—S1118.59 (16)C10—C9—C8120.9 (2)
N2—N1—H1N1120 (2)C10—C9—H9A119.5
S1—N1—H1N1114 (2)C8—C9—H9A119.5
C7—N2—N1113.5 (2)C11—C10—C9118.7 (2)
C2—C1—C6118.6 (2)C11—C10—H10A120.6
C2—C1—H1A120.7C9—C10—H10A120.6
C6—C1—H1A120.7C12—C11—C10121.6 (2)
C1—C2—C3121.4 (2)C12—C11—Br1119.75 (19)
C1—C2—H2A119.3C10—C11—Br1118.67 (19)
C3—C2—H2A119.3C11—C12—C13119.3 (2)
C2—C3—C4118.5 (2)C11—C12—H12A120.4
C2—C3—C14120.8 (2)C13—C12—H12A120.4
C4—C3—C14120.6 (2)C12—C13—C8120.5 (2)
C5—C4—C3121.2 (2)C12—C13—H13A119.8
C5—C4—H4A119.4C8—C13—H13A119.8
C3—C4—H4A119.4C3—C14—H14A109.5
C4—C5—C6119.1 (2)C3—C14—H14B109.5
C4—C5—H5A120.5H14A—C14—H14B109.5
C6—C5—H5A120.5C3—C14—H14C109.5
C5—C6—C1121.2 (2)H14A—C14—H14C109.5
C5—C6—S1120.30 (19)H14B—C14—H14C109.5
C1—C6—S1118.52 (18)
O2—S1—N1—N254.7 (2)O2—S1—C6—C1179.30 (19)
O1—S1—N1—N2177.61 (18)O1—S1—C6—C147.3 (2)
C6—S1—N1—N262.9 (2)N1—S1—C6—C162.4 (2)
S1—N1—N2—C7156.20 (19)N1—N2—C7—C8173.9 (2)
C6—C1—C2—C30.8 (4)N2—C7—C8—C9172.5 (2)
C1—C2—C3—C40.6 (4)N2—C7—C8—C1310.9 (4)
C1—C2—C3—C14179.2 (2)C13—C8—C9—C100.7 (4)
C2—C3—C4—C51.6 (4)C7—C8—C9—C10176.0 (2)
C14—C3—C4—C5178.3 (2)C8—C9—C10—C110.6 (4)
C3—C4—C5—C61.0 (4)C9—C10—C11—C121.5 (4)
C4—C5—C6—C10.5 (4)C9—C10—C11—Br1176.8 (2)
C4—C5—C6—S1178.40 (19)C10—C11—C12—C131.0 (4)
C2—C1—C6—C51.4 (4)Br1—C11—C12—C13177.21 (19)
C2—C1—C6—S1177.52 (19)C11—C12—C13—C80.3 (4)
O2—S1—C6—C51.8 (2)C9—C8—C13—C121.2 (4)
O1—S1—C6—C5133.8 (2)C7—C8—C13—C12175.4 (2)
N1—S1—C6—C5116.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (4)2.06 (4)2.902 (3)171 (4)
C14—H14A···O1ii0.982.573.420 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H13BrN2O2S
Mr353.23
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9565 (3), 9.4005 (3), 12.8020 (6)
α, β, γ (°)97.153 (2), 96.350 (2), 92.125 (1)
V3)705.95 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.06
Crystal size (mm)0.57 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.276, 0.819
No. of measured, independent and
observed [I > 2˘I)] reflections
18030, 5040, 4098
Rint0.034
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.11
No. of reflections5040
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.56

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.85 (4)2.06 (4)2.902 (3)171 (4)
C14—H14A···O1ii0.98002.57003.420 (3)145.00
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. BE thanks Shiraz University for financial support. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAli, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008a). Acta Cryst. E64, o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008b). Acta Cryst. E64, o2424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrygowski, T. M., Pietka, E., Anulewicz, R., Cyranski, M. K. & Nowacki, J. (1998). Tetrahedron, 54, 12289–12292.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehrabi, H., Kia, R., Hassanzadeh, A., Ghobadi, S. & Khavasi, H. R. (2008). Acta Cryst. E64, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTierney, M. S. Jr, McPhee, J. & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw–Hill Medical.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o821-o822
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds