organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,8-Di­methyl-10-p-tolyl-10H-phenoxaphosphine

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 5 March 2009; accepted 17 March 2009; online 25 March 2009)

The title compound (systematic name: 3,6-dimethyl-10-p-tolyl-9-oxa-10-phosphaanthracene), C21H19OP, is a precursor for the preparation of a bidentate xanthene-based ligand, in which the dihedral angle between the toluene ring and the phenoxaphosphine ring system is 83.26 (3)°. The geometry at the P atom is pyramidal, resulting in a longer C—P bond length as compared to the two ring C—P bonds.

Related literature

For related structures based on the xanthene backbone, see: Marimuthu et al. (2008a[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008a). Acta Cryst. E64, o711.],b[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008b). Acta Cryst. E64, o772.],c[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008c). Acta Cryst. E64, o1984-o1985.]). For a related phenoxaphosphine compound, see: Mann et al. (1976[Mann, F. G., Millar, I. T., Powell, M. & Watkin, D. J. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1383-1384.]). The title compound was synthesised by a modified literature method (Bronger et al., 2004[Bronger, R. P. J., Bermon, J. P., Herwig, J., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2004). Adv. Synth. Catal. 346, 789-799.]). For other structurally related ligands, see: Levy et al. (1965[Levy, J. B., Doak, G. O. & Freedman, L. D. (1965). J. Org. Chem. 30, 660-661.]); Seibold et al. (2008[Seibold, S., Schafer, A., Lohstroh, W., Walter, O. & Doring, M. (2008). J. Appl. Polym. Sci. 108, 264-271.]); Shau et al. (2002[Shau, M. D., Lin, C. W., Yang, W. H. & Lin, H. R. (2002). J. Appl. Polym. Sci. 84, 950-961.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19OP

  • Mr = 318.33

  • Monoclinic, P 21 /c

  • a = 10.9363 (3) Å

  • b = 11.6323 (3) Å

  • c = 14.0458 (4) Å

  • β = 111.532 (1)°

  • V = 1662.13 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 173 K

  • 0.51 × 0.49 × 0.48 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 29900 measured reflections

  • 4013 independent reflections

  • 3507 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.07

  • 4013 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was prepared as part of an ongoing study of bidentate and tridentate xanthene-based ligands (Marimuthu et al. (2008a,b,c). Similar ligands have shown relative success for the Rh-catalysed hydroformylation of alkenes. The title compound is an example of a modified xanthene backbone where a phosphorous atom has been substituted into the central ring in order to investigate the electronic properties of the final target ligand when complexed to a metal centre. In addition, methyl groups are present on the outer rings in order to increase the solubility of a resulting catalyst. The outer rings of the phenoxaphosphine backbone are nearly coplanar (dihedral angle of 6.56 (2)°). This value is significantly different from the dihedral angle of 15° reported by Mann et al.(1976) for 10-phenylphenoxaphosphine, which was observed to have a boat-like conformation about the P—O axis. The C15—P1 bond length for the tolyl group is 1.835 (13) Å, which is longer than the C—P bond lengths of the backbone heterocycle (1.805 (13) and 1.809 (13) Å for C1—P1 and C12—P1, respectively). The longer C15—P1 bond length is due to the pyramidal geometry at the P atom. Hence, the C—P—C angles range from 98.0087 (6) to 101.04 (6)°. The ring of the toluene group is nearly perpendicular to the mean plane through the phenoxaphosphine backbone, forming a dihedral angle of 83.26 (3)°

Related literature top

For related structures based on the xanthene backbone, see: Marimuthu et al. (2008a,b,c). For a related phenoxaphosphine compound, see: Mann et al. (1976). For a related experimental procedure, see: Bronger et al. (2004). For other structurally related ligands, see: Levy et al. (1965); Seibold et al. (2008); Shau et al. (2002).

Experimental top

The synthesis of the title compound was modified from literature (Bronger et al. 2004). In an inert nitrogen atmosphere AlCl3 (2.5 g, 18.9 mmol) was added to p-tolylether (2.5 g, 12.6 mmol) in 9 ml phosphorous trichloride (PCl3). The reaction mixture was refluxed for 8 h at 358 K and thereafter the excess PCl3 was distilled off at 363 K. At this temperature, excess anhydrous toluene was added to the reaction mixture. The remaining PCl3 and toluene was distilled off at 383 K to afford an orange-red residue. The residue was again diluted with 15 ml of toluene and cooled to 273 K, followed by the dropwise addition of 3.6 ml pyridine to the mixture while stirring. After an hour, the resulting salts were filtered off and the yellow residue extracted with toluene. The solvent was removed in vacuo, and the crude product purified by filtration through a short plug of silica gel to yield 2.45 g of the title compound as an oil that solidified at room temperature. X-ray quality crystals were grown from a 2-propanol/dichloromethane (1:1 v/v) solution (Yield: 61%; m.p. 337 – 338 K). Spectroscopic analysis: 1H NMR: (400 MHz, C6D6, δ, p.p.m): 1.98 (s, 6H), 1.90 (s, 3H), 6.78 (d, 2H; J(H,H) = 7.2 Hz,), 6.85 (dd, 2H; CH; J(H,H) = 2.7, 1.7 Hz,), 7.09 (d, 2H; J(H,H) = 8.3 Hz,), 7.30 (dd, 2H; J(H,H) = 1.9, 1.6 Hz,), 7.39 (t, 2H, J(H,H)= 7.9 Hz). MS: m/z (%): 357.1 (M + K+) calculated = 357.1 for C21H19OPK+. FTIR: cm-1 = 3009(w), (CH), 2920(s), 1585(w), 1489(m), 1466(vs), 1385(s), 1295(s), 1265(vs), 1231(vs), 909(m).

Refinement top

Non-H atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. All hydrogen atoms were first located in a difference Fourier map, then positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 - 0.99 Å and with Uiso(H) = 1.2 Ueq(C) for aryl H or 1.5 Ueq(C) for alkyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Thermal ellipsoids are shown at the 50% probability level.
3,6-dimethyl-10-p-tolyl-9-oxa-10-phosphaanthracene top
Crystal data top
C21H19OPF(000) = 672
Mr = 318.33Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8225 reflections
a = 10.9363 (3) Åθ = 2.3–28.4°
b = 11.6323 (3) ŵ = 0.17 mm1
c = 14.0458 (4) ÅT = 173 K
β = 111.532 (1)°Needle, colourless
V = 1662.13 (8) Å30.51 × 0.49 × 0.48 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3507 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
ϕ and ω scansh = 1414
29900 measured reflectionsk = 1515
4013 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.586P]
where P = (Fo2 + 2Fc2)/3
4013 reflections(Δ/σ)max = 0.040
211 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C21H19OPV = 1662.13 (8) Å3
Mr = 318.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9363 (3) ŵ = 0.17 mm1
b = 11.6323 (3) ÅT = 173 K
c = 14.0458 (4) Å0.51 × 0.49 × 0.48 mm
β = 111.532 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3507 reflections with I > 2σ(I)
29900 measured reflectionsRint = 0.046
4013 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
4013 reflectionsΔρmin = 0.27 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59638 (12)1.06591 (11)0.15703 (10)0.0274 (3)
C20.53669 (13)1.05047 (12)0.22849 (10)0.0303 (3)
H20.54840.97910.26360.036*
C30.46153 (13)1.13388 (12)0.25049 (10)0.0313 (3)
C40.44183 (14)1.23579 (12)0.19518 (11)0.0361 (3)
H40.38801.29400.20690.043*
C50.49875 (14)1.25429 (12)0.12363 (11)0.0357 (3)
H50.48431.32470.08680.043*
C60.57734 (13)1.16977 (11)0.10547 (10)0.0289 (3)
C70.69900 (12)1.12246 (11)0.00204 (10)0.0284 (3)
C80.73269 (14)1.16321 (12)0.08200 (10)0.0340 (3)
H80.70921.23910.10710.041*
C90.80050 (14)1.09313 (13)0.12506 (10)0.0347 (3)
H90.82461.12220.17890.042*
C100.83423 (13)0.98126 (12)0.09135 (10)0.0310 (3)
C110.79734 (12)0.94259 (11)0.01249 (10)0.0294 (3)
H110.81770.86570.01060.035*
C120.73184 (12)1.01137 (11)0.03436 (9)0.0264 (2)
C130.40629 (15)1.11516 (14)0.33266 (11)0.0399 (3)
H13A0.35531.04370.31900.060*
H13B0.34911.17980.33330.060*
H13C0.47841.10980.39930.060*
C140.90781 (15)0.90328 (14)0.13659 (11)0.0387 (3)
H14A0.99810.89350.08780.058*
H14B0.90930.93710.20010.058*
H14C0.86410.82830.15150.058*
C150.85437 (13)0.98293 (12)0.24735 (9)0.0286 (3)
C160.94457 (15)0.89406 (13)0.28148 (11)0.0377 (3)
H160.92490.82090.24930.045*
C171.06328 (16)0.91088 (17)0.36216 (12)0.0474 (4)
H171.12460.84940.38370.057*
C181.09347 (15)1.01549 (17)0.41141 (11)0.0463 (4)
C191.00354 (15)1.10404 (16)0.37752 (11)0.0440 (4)
H191.02301.17670.41060.053*
C200.88574 (14)1.08866 (13)0.29636 (11)0.0358 (3)
H200.82581.15090.27390.043*
C211.22049 (18)1.0331 (2)0.50093 (13)0.0681 (6)
H21A1.25871.10740.49400.102*
H21B1.28210.97130.50240.102*
H21C1.20331.03220.56470.102*
O10.63326 (10)1.20048 (8)0.03575 (8)0.0356 (2)
P10.69921 (3)0.95166 (3)0.14160 (2)0.02660 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0250 (6)0.0274 (6)0.0299 (6)0.0007 (5)0.0102 (5)0.0010 (5)
C20.0298 (6)0.0307 (6)0.0311 (6)0.0013 (5)0.0122 (5)0.0003 (5)
C30.0279 (6)0.0352 (7)0.0316 (6)0.0036 (5)0.0119 (5)0.0059 (5)
C40.0349 (7)0.0322 (7)0.0445 (8)0.0023 (5)0.0185 (6)0.0054 (6)
C50.0383 (7)0.0273 (6)0.0439 (8)0.0038 (5)0.0179 (6)0.0021 (6)
C60.0287 (6)0.0280 (6)0.0313 (6)0.0008 (5)0.0125 (5)0.0000 (5)
C70.0277 (6)0.0290 (6)0.0288 (6)0.0008 (5)0.0105 (5)0.0001 (5)
C80.0373 (7)0.0331 (7)0.0332 (7)0.0006 (5)0.0147 (6)0.0059 (5)
C90.0370 (7)0.0418 (8)0.0279 (6)0.0051 (6)0.0150 (5)0.0011 (5)
C100.0295 (6)0.0372 (7)0.0267 (6)0.0050 (5)0.0110 (5)0.0063 (5)
C110.0308 (6)0.0289 (6)0.0279 (6)0.0016 (5)0.0100 (5)0.0026 (5)
C120.0263 (6)0.0285 (6)0.0239 (5)0.0034 (5)0.0084 (5)0.0013 (5)
C130.0402 (8)0.0469 (9)0.0385 (7)0.0005 (6)0.0214 (6)0.0047 (6)
C140.0404 (8)0.0456 (8)0.0346 (7)0.0017 (6)0.0190 (6)0.0073 (6)
C150.0304 (6)0.0337 (6)0.0250 (6)0.0017 (5)0.0140 (5)0.0048 (5)
C160.0413 (8)0.0374 (7)0.0366 (7)0.0062 (6)0.0168 (6)0.0111 (6)
C170.0379 (8)0.0626 (10)0.0412 (8)0.0109 (7)0.0140 (7)0.0220 (8)
C180.0342 (7)0.0774 (12)0.0272 (7)0.0079 (8)0.0111 (6)0.0112 (7)
C190.0416 (8)0.0588 (10)0.0334 (7)0.0115 (7)0.0159 (6)0.0083 (7)
C200.0350 (7)0.0398 (7)0.0338 (7)0.0013 (6)0.0141 (6)0.0030 (6)
C210.0400 (9)0.1219 (19)0.0356 (8)0.0161 (10)0.0060 (7)0.0136 (10)
O10.0444 (6)0.0277 (5)0.0431 (5)0.0054 (4)0.0261 (5)0.0070 (4)
P10.02996 (18)0.02340 (17)0.02918 (18)0.00000 (12)0.01410 (14)0.00138 (12)
Geometric parameters (Å, º) top
C1—C61.3845 (18)C12—P11.8092 (13)
C1—C21.3953 (18)C13—H13A0.9800
C1—P11.8046 (13)C13—H13B0.9800
C2—C31.3780 (18)C13—H13C0.9800
C2—H20.9500C14—H14A0.9800
C3—C41.390 (2)C14—H14B0.9800
C3—C131.5021 (19)C14—H14C0.9800
C4—C51.379 (2)C15—C161.3873 (19)
C4—H40.9500C15—C201.390 (2)
C5—C61.3896 (19)C15—P11.8352 (13)
C5—H50.9500C16—C171.389 (2)
C6—O11.3784 (15)C16—H160.9500
C7—O11.3794 (16)C17—C181.379 (3)
C7—C81.3876 (18)C17—H170.9500
C7—C121.3876 (18)C18—C191.382 (3)
C8—C91.382 (2)C18—C211.507 (2)
C8—H80.9500C19—C201.383 (2)
C9—C101.388 (2)C19—H190.9500
C9—H90.9500C20—H200.9500
C10—C111.3858 (18)C21—H21A0.9800
C10—C141.4999 (19)C21—H21B0.9800
C11—C121.3901 (18)C21—H21C0.9800
C11—H110.9500
C6—C1—C2117.93 (12)H13A—C13—H13B109.5
C6—C1—P1124.10 (10)C3—C13—H13C109.5
C2—C1—P1117.92 (10)H13A—C13—H13C109.5
C3—C2—C1123.08 (12)H13B—C13—H13C109.5
C3—C2—H2118.5C10—C14—H14A109.5
C1—C2—H2118.5C10—C14—H14B109.5
C2—C3—C4117.25 (12)H14A—C14—H14B109.5
C2—C3—C13120.76 (13)C10—C14—H14C109.5
C4—C3—C13121.98 (13)H14A—C14—H14C109.5
C5—C4—C3121.42 (13)H14B—C14—H14C109.5
C5—C4—H4119.3C16—C15—C20118.26 (13)
C3—C4—H4119.3C16—C15—P1117.45 (11)
C4—C5—C6119.89 (13)C20—C15—P1124.28 (11)
C4—C5—H5120.1C15—C16—C17120.68 (15)
C6—C5—H5120.1C15—C16—H16119.7
O1—C6—C1125.24 (12)C17—C16—H16119.7
O1—C6—C5114.37 (12)C18—C17—C16120.93 (15)
C1—C6—C5120.38 (12)C18—C17—H17119.5
O1—C7—C8114.67 (12)C16—C17—H17119.5
O1—C7—C12124.88 (11)C17—C18—C19118.41 (14)
C8—C7—C12120.45 (12)C17—C18—C21121.11 (18)
C9—C8—C7119.82 (13)C19—C18—C21120.48 (19)
C9—C8—H8120.1C18—C19—C20121.14 (16)
C7—C8—H8120.1C18—C19—H19119.4
C8—C9—C10121.47 (12)C20—C19—H19119.4
C8—C9—H9119.3C19—C20—C15120.58 (15)
C10—C9—H9119.3C19—C20—H20119.7
C11—C10—C9117.27 (12)C15—C20—H20119.7
C11—C10—C14120.08 (13)C18—C21—H21A109.5
C9—C10—C14122.64 (12)C18—C21—H21B109.5
C10—C11—C12122.92 (12)H21A—C21—H21B109.5
C10—C11—H11118.5C18—C21—H21C109.5
C12—C11—H11118.5H21A—C21—H21C109.5
C7—C12—C11118.04 (12)H21B—C21—H21C109.5
C7—C12—P1124.12 (10)C6—O1—C7122.19 (10)
C11—C12—P1117.81 (10)C1—P1—C1298.00 (6)
C3—C13—H13A109.5C1—P1—C15100.87 (6)
C3—C13—H13B109.5C12—P1—C15101.04 (6)
C6—C1—C2—C30.7 (2)C20—C15—C16—C170.3 (2)
P1—C1—C2—C3176.68 (10)P1—C15—C16—C17179.07 (11)
C1—C2—C3—C42.4 (2)C15—C16—C17—C181.1 (2)
C1—C2—C3—C13176.31 (13)C16—C17—C18—C191.0 (2)
C2—C3—C4—C52.1 (2)C16—C17—C18—C21178.23 (14)
C13—C3—C4—C5176.57 (13)C17—C18—C19—C200.1 (2)
C3—C4—C5—C60.2 (2)C21—C18—C19—C20179.10 (14)
C2—C1—C6—O1177.32 (12)C18—C19—C20—C150.6 (2)
P1—C1—C6—O10.09 (19)C16—C15—C20—C190.5 (2)
C2—C1—C6—C51.29 (19)P1—C15—C20—C19178.12 (11)
P1—C1—C6—C5178.52 (10)C1—C6—O1—C710.4 (2)
C4—C5—C6—O1177.21 (13)C5—C6—O1—C7170.89 (12)
C4—C5—C6—C11.5 (2)C8—C7—O1—C6171.17 (12)
O1—C7—C8—C9179.10 (12)C12—C7—O1—C69.1 (2)
C12—C7—C8—C90.6 (2)C6—C1—P1—C128.60 (12)
C7—C8—C9—C101.1 (2)C2—C1—P1—C12174.17 (10)
C8—C9—C10—C110.1 (2)C6—C1—P1—C1594.34 (12)
C8—C9—C10—C14179.98 (13)C2—C1—P1—C1582.90 (11)
C9—C10—C11—C121.45 (19)C7—C12—P1—C19.72 (12)
C14—C10—C11—C12178.41 (12)C11—C12—P1—C1172.23 (10)
O1—C7—C12—C11179.45 (12)C7—C12—P1—C1593.08 (12)
C8—C7—C12—C110.86 (19)C11—C12—P1—C1584.97 (11)
O1—C7—C12—P12.50 (19)C16—C15—P1—C1159.40 (10)
C8—C7—C12—P1177.19 (10)C20—C15—P1—C119.24 (12)
C10—C11—C12—C71.94 (19)C16—C15—P1—C12100.12 (11)
C10—C11—C12—P1176.23 (10)C20—C15—P1—C1281.24 (12)

Experimental details

Crystal data
Chemical formulaC21H19OP
Mr318.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.9363 (3), 11.6323 (3), 14.0458 (4)
β (°) 111.532 (1)
V3)1662.13 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.51 × 0.49 × 0.48
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29900, 4013, 3507
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.07
No. of reflections4013
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

We thank Dr Manuel Fernandes for the data collection and acknowledge SASOL, THRIP and the University of KwaZulu-Natal for financial support.

References

First citationBronger, R. P. J., Bermon, J. P., Herwig, J., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2004). Adv. Synth. Catal. 346, 789–799.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLevy, J. B., Doak, G. O. & Freedman, L. D. (1965). J. Org. Chem. 30, 660–661.  CrossRef CAS Web of Science Google Scholar
First citationMann, F. G., Millar, I. T., Powell, M. & Watkin, D. J. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1383–1384.  CrossRef Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2008a). Acta Cryst. E64, o711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2008b). Acta Cryst. E64, o772.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2008c). Acta Cryst. E64, o1984–o1985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeibold, S., Schafer, A., Lohstroh, W., Walter, O. & Doring, M. (2008). J. Appl. Polym. Sci. 108, 264–271.  Web of Science CSD CrossRef CAS Google Scholar
First citationShau, M. D., Lin, C. W., Yang, W. H. & Lin, H. R. (2002). J. Appl. Polym. Sci. 84, 950–961.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds