organic compounds
N′-(3-Bromo-5-chloro-2-hydroxybenzylidene)-2-methoxybenzohydrazide
aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: houjinlong09@163.com
The title compound, C15H12BrClN2O3, was obtained by the condensation reaction between 3-bromo-5-chloro-2-hydroxybenzaldehyde and 2-methoxybenzohydrazide. The molecule is essentially planar, with a dihedral angle between the two benzene rings of 4.7 (2)°, and displays an E configuration about the C=N double bond. The molecular conformation is stabilized by intramolecular O—H⋯N and N—H⋯O hydrogen bonds. In the molecules are linked into zigzag chains running parallel to the c axis by intermolecular C—H⋯O hydrogen bonds. The chains are further connected through aromatic π–π stacking interactions with centroid–centroid distances of 3.583 (4) Å.
Related literature
For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006); Karthikeyan et al. (2006); Kucukguzel et al. (2006). For the crystal structures of related hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Zhang et al. (2009); Khaledi et al. (2008). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809010198/rz2301sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809010198/rz2301Isup2.hkl
3-Bromo-5-chloro-2-hydroxybenzaldehyde (1.0 mmol, 235.5 mg) and 2-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were mixed and refluxed with stirring for two hours. Yellow single crystals were formed after slow evaporation of the solution in air for a week.
H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å, and with the Uiso(H) value fixed at 0.08 Å2. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) or 1.5Ueq(O).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure with displacement ellipsoids drawn at 30% probability for non-H atoms. |
C15H12BrClN2O3 | F(000) = 768 |
Mr = 383.63 | Dx = 1.672 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1920 reflections |
a = 10.883 (1) Å | θ = 2.4–25.0° |
b = 12.863 (2) Å | µ = 2.89 mm−1 |
c = 10.950 (1) Å | T = 298 K |
β = 96.027 (3)° | Block, yellow |
V = 1524.4 (3) Å3 | 0.12 × 0.12 × 0.10 mm |
Z = 4 |
Bruker SMART 1000 CCD area-detector diffractometer | 2323 independent reflections |
Radiation source: fine-focus sealed tube | 1906 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 27.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −13→12 |
Tmin = 0.709, Tmax = 0.746 | k = −16→16 |
4397 measured reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.062 | w = 1/[σ2(Fo2) + (0.0041P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2323 reflections | Δρmax = 0.32 e Å−3 |
205 parameters | Δρmin = −0.28 e Å−3 |
3 restraints | Absolute structure: Flack (1983), 671 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.068 (12) |
C15H12BrClN2O3 | V = 1524.4 (3) Å3 |
Mr = 383.63 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 10.883 (1) Å | µ = 2.89 mm−1 |
b = 12.863 (2) Å | T = 298 K |
c = 10.950 (1) Å | 0.12 × 0.12 × 0.10 mm |
β = 96.027 (3)° |
Bruker SMART 1000 CCD area-detector diffractometer | 2323 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1906 reflections with I > 2σ(I) |
Tmin = 0.709, Tmax = 0.746 | Rint = 0.028 |
4397 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.062 | Δρmax = 0.32 e Å−3 |
S = 1.02 | Δρmin = −0.28 e Å−3 |
2323 reflections | Absolute structure: Flack (1983), 671 Friedel pairs |
205 parameters | Absolute structure parameter: 0.068 (12) |
3 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.87674 (5) | 1.27290 (3) | 0.55418 (4) | 0.05914 (15) | |
Cl1 | 0.79439 (11) | 1.45929 (8) | 0.10011 (11) | 0.0630 (3) | |
O3 | 0.5131 (3) | 0.7894 (2) | −0.0042 (3) | 0.0538 (9) | |
O2 | 0.6516 (3) | 0.8295 (2) | 0.3590 (3) | 0.0546 (9) | |
C8 | 0.6188 (3) | 0.8209 (3) | 0.2494 (4) | 0.0396 (9) | |
N2 | 0.6245 (3) | 0.9033 (2) | 0.1728 (3) | 0.0418 (8) | |
N1 | 0.6674 (3) | 0.9949 (2) | 0.2236 (3) | 0.0392 (7) | |
O1 | 0.7599 (3) | 1.09258 (19) | 0.4140 (2) | 0.0444 (6) | |
H1 | 0.7332 | 1.0421 | 0.3738 | 0.067* | |
C7 | 0.6737 (3) | 1.0742 (3) | 0.1564 (4) | 0.0415 (9) | |
H7 | 0.6477 | 1.0713 | 0.0728 | 0.050* | |
C2 | 0.7652 (3) | 1.1748 (3) | 0.3396 (3) | 0.0344 (8) | |
C6 | 0.7306 (4) | 1.2597 (3) | 0.1403 (5) | 0.0390 (11) | |
H6 | 0.7025 | 1.2577 | 0.0571 | 0.047* | |
C9 | 0.5699 (4) | 0.7207 (3) | 0.1948 (4) | 0.0383 (9) | |
C1 | 0.7228 (3) | 1.1710 (3) | 0.2134 (3) | 0.0370 (9) | |
C5 | 0.7799 (3) | 1.3492 (3) | 0.1920 (4) | 0.0447 (10) | |
C3 | 0.8145 (3) | 1.2676 (3) | 0.3864 (4) | 0.0420 (9) | |
C4 | 0.8216 (4) | 1.3547 (3) | 0.3147 (4) | 0.0444 (10) | |
H4 | 0.8541 | 1.4163 | 0.3487 | 0.053* | |
C10 | 0.5176 (3) | 0.7058 (3) | 0.0733 (4) | 0.0433 (10) | |
C11 | 0.4706 (4) | 0.6082 (3) | 0.0378 (4) | 0.0528 (11) | |
H11 | 0.4330 | 0.5987 | −0.0417 | 0.063* | |
C15 | 0.4532 (5) | 0.7794 (4) | −0.1255 (4) | 0.0696 (15) | |
H15A | 0.3678 | 0.7624 | −0.1219 | 0.104* | |
H15B | 0.4922 | 0.7252 | −0.1678 | 0.104* | |
H15C | 0.4593 | 0.8438 | −0.1687 | 0.104* | |
C14 | 0.5754 (4) | 0.6344 (4) | 0.2755 (4) | 0.0486 (12) | |
H14 | 0.6094 | 0.6422 | 0.3565 | 0.058* | |
C13 | 0.5317 (4) | 0.5407 (4) | 0.2359 (5) | 0.0645 (13) | |
H13 | 0.5374 | 0.4845 | 0.2896 | 0.077* | |
C12 | 0.4787 (4) | 0.5271 (4) | 0.1169 (5) | 0.0661 (13) | |
H12 | 0.4485 | 0.4622 | 0.0911 | 0.079* | |
H2 | 0.597 (4) | 0.897 (4) | 0.0932 (14) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0772 (3) | 0.0527 (2) | 0.0443 (2) | −0.0058 (3) | −0.00881 (19) | −0.0139 (3) |
Cl1 | 0.0775 (8) | 0.0393 (6) | 0.0743 (8) | 0.0053 (5) | 0.0180 (6) | 0.0199 (6) |
O3 | 0.066 (2) | 0.059 (2) | 0.0339 (18) | −0.0160 (16) | −0.0040 (16) | −0.0048 (16) |
O2 | 0.080 (2) | 0.049 (2) | 0.0320 (18) | −0.0123 (16) | −0.0084 (16) | −0.0009 (14) |
C8 | 0.041 (2) | 0.038 (2) | 0.040 (2) | 0.0012 (17) | 0.0042 (18) | −0.0006 (19) |
N2 | 0.058 (2) | 0.0367 (19) | 0.0294 (17) | −0.0104 (15) | −0.0027 (15) | −0.0052 (15) |
N1 | 0.0491 (18) | 0.0338 (18) | 0.0338 (17) | −0.0084 (14) | 0.0003 (14) | −0.0040 (14) |
O1 | 0.0669 (17) | 0.0337 (16) | 0.0304 (14) | −0.0053 (13) | −0.0056 (13) | −0.0023 (12) |
C7 | 0.049 (2) | 0.044 (2) | 0.031 (2) | 0.0010 (18) | −0.0001 (17) | −0.0006 (18) |
C2 | 0.041 (2) | 0.028 (2) | 0.034 (2) | 0.0049 (15) | 0.0012 (17) | −0.0020 (16) |
C6 | 0.042 (2) | 0.037 (3) | 0.038 (3) | 0.0041 (18) | 0.0027 (19) | 0.0063 (18) |
C9 | 0.040 (2) | 0.036 (2) | 0.041 (2) | −0.0012 (16) | 0.0115 (18) | −0.0041 (18) |
C1 | 0.0378 (19) | 0.037 (2) | 0.036 (2) | 0.0046 (17) | 0.0020 (17) | −0.0033 (17) |
C5 | 0.045 (2) | 0.031 (2) | 0.059 (3) | 0.0068 (18) | 0.013 (2) | 0.006 (2) |
C3 | 0.045 (2) | 0.045 (2) | 0.035 (2) | 0.0050 (18) | −0.0012 (18) | −0.0095 (19) |
C4 | 0.050 (2) | 0.029 (2) | 0.055 (3) | 0.0033 (16) | 0.008 (2) | −0.0042 (18) |
C10 | 0.038 (2) | 0.050 (3) | 0.043 (2) | −0.0062 (17) | 0.0095 (18) | −0.0154 (19) |
C11 | 0.053 (3) | 0.052 (3) | 0.055 (3) | −0.015 (2) | 0.012 (2) | −0.018 (2) |
C15 | 0.073 (3) | 0.089 (4) | 0.044 (3) | −0.023 (3) | −0.005 (2) | −0.011 (3) |
C14 | 0.045 (2) | 0.052 (3) | 0.049 (3) | −0.006 (2) | 0.008 (2) | −0.010 (2) |
C13 | 0.071 (3) | 0.043 (3) | 0.083 (4) | −0.004 (2) | 0.025 (3) | 0.012 (3) |
C12 | 0.067 (3) | 0.044 (3) | 0.090 (4) | −0.014 (2) | 0.020 (3) | −0.018 (3) |
Br1—C3 | 1.891 (4) | C6—H6 | 0.9300 |
Cl1—C5 | 1.754 (4) | C9—C10 | 1.404 (6) |
O3—C10 | 1.367 (5) | C9—C14 | 1.417 (6) |
O3—C15 | 1.423 (5) | C5—C4 | 1.374 (6) |
O2—C8 | 1.221 (4) | C3—C4 | 1.375 (6) |
C8—N2 | 1.357 (5) | C4—H4 | 0.9300 |
C8—C9 | 1.494 (5) | C10—C11 | 1.396 (5) |
N2—N1 | 1.364 (4) | C11—C12 | 1.353 (7) |
N2—H2 | 0.895 (10) | C11—H11 | 0.9300 |
N1—C7 | 1.265 (4) | C15—H15A | 0.9600 |
O1—C2 | 1.341 (4) | C15—H15B | 0.9600 |
O1—H1 | 0.8200 | C15—H15C | 0.9600 |
C7—C1 | 1.468 (5) | C14—C13 | 1.350 (6) |
C7—H7 | 0.9300 | C14—H14 | 0.9300 |
C2—C3 | 1.384 (5) | C13—C12 | 1.379 (7) |
C2—C1 | 1.411 (5) | C13—H13 | 0.9300 |
C6—C5 | 1.367 (6) | C12—H12 | 0.9300 |
C6—C1 | 1.402 (6) | ||
C10—O3—C15 | 119.4 (4) | C4—C3—C2 | 122.2 (4) |
O2—C8—N2 | 120.6 (4) | C4—C3—Br1 | 119.3 (3) |
O2—C8—C9 | 121.8 (4) | C2—C3—Br1 | 118.5 (3) |
N2—C8—C9 | 117.6 (4) | C5—C4—C3 | 118.9 (4) |
C8—N2—N1 | 117.3 (3) | C5—C4—H4 | 120.5 |
C8—N2—H2 | 120 (3) | C3—C4—H4 | 120.5 |
N1—N2—H2 | 123 (3) | O3—C10—C11 | 123.1 (4) |
C7—N1—N2 | 119.8 (3) | O3—C10—C9 | 117.7 (3) |
C2—O1—H1 | 109.5 | C11—C10—C9 | 119.1 (4) |
N1—C7—C1 | 118.4 (3) | C12—C11—C10 | 121.2 (4) |
N1—C7—H7 | 120.8 | C12—C11—H11 | 119.4 |
C1—C7—H7 | 120.8 | C10—C11—H11 | 119.4 |
O1—C2—C3 | 119.6 (3) | O3—C15—H15A | 109.5 |
O1—C2—C1 | 122.5 (3) | O3—C15—H15B | 109.5 |
C3—C2—C1 | 117.9 (3) | H15A—C15—H15B | 109.5 |
C5—C6—C1 | 119.6 (4) | O3—C15—H15C | 109.5 |
C5—C6—H6 | 120.2 | H15A—C15—H15C | 109.5 |
C1—C6—H6 | 120.2 | H15B—C15—H15C | 109.5 |
C10—C9—C14 | 118.1 (4) | C13—C14—C9 | 120.6 (4) |
C10—C9—C8 | 126.1 (4) | C13—C14—H14 | 119.7 |
C14—C9—C8 | 115.9 (4) | C9—C14—H14 | 119.7 |
C6—C1—C2 | 119.8 (4) | C14—C13—C12 | 121.0 (5) |
C6—C1—C7 | 119.3 (4) | C14—C13—H13 | 119.5 |
C2—C1—C7 | 120.9 (3) | C12—C13—H13 | 119.5 |
C6—C5—C4 | 121.5 (4) | C11—C12—C13 | 119.9 (4) |
C6—C5—Cl1 | 119.8 (4) | C11—C12—H12 | 120.0 |
C4—C5—Cl1 | 118.6 (3) | C13—C12—H12 | 120.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.83 | 2.549 (4) | 146 |
N2—H2···O3 | 0.90 (1) | 1.92 (3) | 2.623 (4) | 134 (4) |
C6—H6···O2i | 0.93 | 2.45 | 3.315 (6) | 154 |
Symmetry code: (i) x, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H12BrClN2O3 |
Mr | 383.63 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 298 |
a, b, c (Å) | 10.883 (1), 12.863 (2), 10.950 (1) |
β (°) | 96.027 (3) |
V (Å3) | 1524.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.89 |
Crystal size (mm) | 0.12 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.709, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4397, 2323, 1906 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.062, 1.02 |
No. of reflections | 2323 |
No. of parameters | 205 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.28 |
Absolute structure | Flack (1983), 671 Friedel pairs |
Absolute structure parameter | 0.068 (12) |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 | 1.83 | 2.549 (4) | 146.1 |
N2—H2···O3 | 0.895 (10) | 1.92 (3) | 2.623 (4) | 134 (4) |
C6—H6···O2i | 0.93 | 2.45 | 3.315 (6) | 154 |
Symmetry code: (i) x, −y+2, z−1/2. |
Acknowledgements
Financially support from Qiqihar University is gratefully acknowledged.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. Web of Science CSD CrossRef IUCr Journals Google Scholar
Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489. Web of Science CrossRef PubMed CAS Google Scholar
Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359. Web of Science CrossRef PubMed Google Scholar
Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Cukurovali et al., 2006; Karthikeyan et al., 2006; Kucukguzel et al., 2006). In the last two years, several hydrazone compounds have been structurally characterized (Mohd Lair et al., 2009; Fun et al., 2008; Zhang et al., 2009; Khaledi et al., 2008). In this paper, the synthesis and crystal structure of the title compound, derived from the condensation reaction of 3-bromo-5-chloro-2-hydroxybenzaldehyde and 2-methoxybenzohydrazide, is reported.
The molecular structure of the title compound is shown in Fig. 1. The molecule is essentially planar (mean deviation 0.010 (4) Å) and displays an E configuration about the C═N double bond. All bond lengths are within normal ranges (Allen et al., 1987). The molecular conformation is stabilized by intramolecular O—H···N and N—H···O hydrogen bonds (Table 1). In the crystal structure, the molecules are linked into zig-zag chains running parallel to the c axis by intermolecular C—H···O hydrogen bonds. The chains are further connected by aromatic π-π stacking interactions: Cp1···Cp2i = 3.583 (4) Å, perpendicular interplanar distance = 3.430 (4) Å, Cp1···Cp2i offset = 1.037 (3) Å [Cp1 and Cp2 are the centroids of the C9–C14 and C1–C6 armatic rings, respectively. Symmetry code: (i) -1/2+x, -1/2+y, z].