organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 4-(1-methyl-1H-pyrazol-5-yl)piperidine-1-carboxyl­ate

aPfizer Global Research and Development, La Jolla Labs, 10614 Science Center Drive, San Diego, CA 92121, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: alex.yanovsky@pfizer.com

(Received 15 March 2009; accepted 20 March 2009; online 25 March 2009)

The reaction of (E)-tert-butyl 4-[3-(dimethyl­amino)acrylo­yl]piperidine-1-carboxyl­ate with methyl­hydrazine leads to the formation of the title compound, C14H23N3O2, with a 1-methyl-1H-pyrazol-5-yl substituent. The plane of the pyrazole ring forms a dihedral angle of 33.4 (1)° with the approximate mirror plane of the piperidine ring.

Related literature

For the structure of a related compound with a five-membered aromatic ring bonded to a saturated six-membered ring, see: Basil et al. (2002[Basil, L. F., Meyers, A. I. & Hassner, A. (2002). Tetrahedron, 58, 207-213.]).

[Scheme 1]

Experimental

Crystal data
  • C14H23N3O2

  • Mr = 265.35

  • Monoclinic, P 21 /c

  • a = 11.356 (3) Å

  • b = 11.735 (3) Å

  • c = 11.245 (2) Å

  • β = 100.224 (3)°

  • V = 1474.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 198 K

  • 0.12 × 0.12 × 0.06 mm

Data collection
  • Siemens P4 APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.990, Tmax = 0.995

  • 14589 measured reflections

  • 3253 independent reflections

  • 2157 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.162

  • S = 1.03

  • 3253 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The reaction of (E)-tert-butyl 4-(3-(dimethylamino)acryloyl)piperidine-1-carboxylate with methylhydrazine leads to the formation of a pyrazole ring and can potentially produce two compounds differing in the location of the methyl group. The present X-ray study unambiguously established the structure of the product of the above cyclization as the piperidine derivative with 1-methylpyrazol-5-yl substituent (Fig.1).

The mean plane of the pyrazolyl ring forms a dihedral angle of 33.4 (1)° with the plane drawn through the C6, C3, N1, C10 atoms; this plane in fact coincides with the approximate mirror plane of the piperidine ring. The known structures featuring direct bonding between an aromatic 5-membered ring and a cycloxane/piperidine ring are surprisingly scarce. The conformation of the title compound is substantially different from that of (1R,2R,3S)-1-((4S)-4-tert-butyl-2-oxazolinyl)-2-phenyl-3-(phenylsulfonyl)cyclohexane (Basil et al., 2002), where the 5-membered ring carries neither H atoms nor any other substituents in 1 and 3 positions and is effectively coplanar with the mirror plane of the cyclohexyl group.

Related literature top

For the structure of a related compound with a five-membered aromatic ring bonded to a saturated six-membered ring, see: Basil et al. (2002).

Experimental top

A mixture of (E)-tert-butyl 4-(3-(dimethylamino)acryloyl)piperidine-1-carboxylate (3.95 g, 14 mmol) and methylhydrazine (0.77 ml, 1.05 eq) was refluxed for 2 h in ethanol (20 ml). The reaction mixture was then cooled down and evaporated to dryness. The residue was dissolved in 2-methyltetrahydrofurane, and the crystals formed were filtered to give 1.05 g (32%) of a white solid. It was then again recrystallized by slow evaporation of an ethylactetate solution to obtain the crystals suitable for X-ray study. 1H NMR (400 MHz, DMSO-d6) d, p.p.m.: 1.41 (s, 11H), 1.81 (m, 2H), 2.85 (m, 3H), 3.76 (s, 3H), 4.02 (m, 2 H), 6.05 (d, J = 2.01 Hz, 1H) 7.27 (d, J = 1.76 Hz, 1H).

Refinement top

All H atoms were placed in geometrically calculated positions (C—H = 0.95, 0.98, 0.99 and 1.00 Å for aromatic, methyl, methylene and methyne H atoms respectively) and included in the refinement in riding motion approximation. The Uiso(H) were set to 1.2Ueq of the carrying atom for aromatic, methylene and methyne groups, and 1.5Ueq for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and atom numbering scheme; H atoms are drawn as circles with arbitrary small radius.
tert-Butyl 4-(1-methyl-1H-pyrazol-5-yl)piperidine-1-carboxylate top
Crystal data top
C14H23N3O2F(000) = 576
Mr = 265.35Dx = 1.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4631 reflections
a = 11.356 (3) Åθ = 2.5–26.9°
b = 11.735 (3) ŵ = 0.08 mm1
c = 11.245 (2) ÅT = 198 K
β = 100.224 (3)°Block, colorless
V = 1474.8 (6) Å30.12 × 0.12 × 0.06 mm
Z = 4
Data collection top
Siemens P4 APEX CCD area-detector
diffractometer
3253 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1415
Tmin = 0.990, Tmax = 0.995k = 1515
14589 measured reflectionsl = 135
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0866P)2 + 0.0739P]
where P = (Fo2 + 2Fc2)/3
3253 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H23N3O2V = 1474.8 (6) Å3
Mr = 265.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.356 (3) ŵ = 0.08 mm1
b = 11.735 (3) ÅT = 198 K
c = 11.245 (2) Å0.12 × 0.12 × 0.06 mm
β = 100.224 (3)°
Data collection top
Siemens P4 APEX CCD area-detector
diffractometer
3253 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2157 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.995Rint = 0.063
14589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
3253 reflectionsΔρmin = 0.17 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47096 (16)0.26958 (14)0.23649 (18)0.0443 (5)
H1A0.52420.31570.29740.053*
H1B0.39680.31360.20910.053*
C20.53249 (16)0.24635 (14)0.12987 (18)0.0446 (4)
H2A0.55680.31960.09780.054*
H2B0.47540.20870.06500.054*
C30.64312 (15)0.17030 (14)0.16493 (17)0.0415 (4)
H30.70220.21190.22620.050*
C40.60673 (17)0.06158 (14)0.22336 (18)0.0460 (5)
H4A0.55250.01650.16230.055*
H4B0.67890.01500.25210.055*
C50.54446 (17)0.08740 (16)0.32860 (19)0.0510 (5)
H5A0.51710.01540.36060.061*
H5B0.60160.12430.39400.061*
C60.70107 (14)0.14487 (14)0.05859 (17)0.0420 (4)
C70.68977 (17)0.05354 (15)0.01942 (18)0.0480 (5)
H70.64250.01290.01660.058*
C80.76220 (19)0.07921 (17)0.10319 (19)0.0558 (5)
H80.77180.03070.16840.067*
C90.82255 (17)0.32615 (16)0.0698 (2)0.0564 (5)
H9A0.88480.35450.02720.085*
H9B0.85640.31560.15550.085*
H9C0.75690.38140.06180.085*
C100.34339 (16)0.14793 (15)0.34221 (18)0.0454 (5)
C110.15104 (16)0.23821 (15)0.35928 (18)0.0463 (5)
C120.07212 (18)0.14266 (17)0.2992 (2)0.0583 (5)
H12A0.06990.14510.21170.088*
H12B0.00910.15200.31600.088*
H12C0.10460.06920.33100.088*
C130.16876 (19)0.2322 (2)0.4953 (2)0.0613 (6)
H13A0.19670.15590.52220.092*
H13B0.09270.24800.52180.092*
H13C0.22840.28890.53020.092*
C140.10122 (16)0.35355 (16)0.3152 (2)0.0525 (5)
H14A0.15400.41380.35460.079*
H14B0.02120.36300.33510.079*
H14C0.09620.35850.22750.079*
N10.44168 (12)0.16258 (11)0.29133 (15)0.0440 (4)
N20.77748 (13)0.21780 (12)0.01773 (15)0.0458 (4)
N30.81639 (14)0.17886 (14)0.08198 (16)0.0543 (5)
O10.32504 (12)0.06460 (12)0.40018 (13)0.0588 (4)
O20.26749 (11)0.23697 (10)0.31802 (12)0.0475 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0469 (10)0.0301 (9)0.0581 (13)0.0007 (7)0.0151 (8)0.0013 (8)
C20.0499 (10)0.0311 (8)0.0540 (12)0.0023 (7)0.0127 (8)0.0036 (8)
C30.0438 (9)0.0338 (8)0.0470 (12)0.0004 (7)0.0082 (8)0.0029 (8)
C40.0483 (10)0.0358 (9)0.0546 (12)0.0050 (7)0.0110 (8)0.0044 (8)
C50.0524 (11)0.0447 (10)0.0575 (13)0.0096 (8)0.0141 (9)0.0113 (9)
C60.0416 (9)0.0358 (9)0.0478 (12)0.0056 (7)0.0060 (8)0.0026 (8)
C70.0569 (11)0.0353 (9)0.0513 (12)0.0047 (8)0.0081 (9)0.0043 (8)
C80.0687 (13)0.0481 (11)0.0515 (13)0.0151 (10)0.0131 (10)0.0046 (9)
C90.0516 (11)0.0455 (11)0.0737 (15)0.0084 (8)0.0151 (10)0.0055 (10)
C100.0502 (10)0.0382 (10)0.0478 (12)0.0027 (8)0.0089 (8)0.0008 (8)
C110.0439 (10)0.0493 (11)0.0483 (12)0.0036 (8)0.0150 (8)0.0024 (8)
C120.0547 (11)0.0539 (12)0.0677 (15)0.0089 (9)0.0144 (10)0.0050 (10)
C130.0612 (13)0.0716 (15)0.0534 (14)0.0026 (10)0.0167 (10)0.0002 (11)
C140.0455 (10)0.0532 (12)0.0595 (14)0.0012 (8)0.0117 (9)0.0057 (9)
N10.0465 (8)0.0341 (7)0.0533 (10)0.0032 (6)0.0141 (7)0.0047 (7)
N20.0480 (8)0.0383 (8)0.0530 (10)0.0031 (6)0.0145 (7)0.0004 (7)
N30.0592 (10)0.0511 (10)0.0565 (12)0.0107 (8)0.0208 (8)0.0020 (8)
O10.0623 (9)0.0479 (8)0.0700 (11)0.0008 (6)0.0220 (7)0.0149 (7)
O20.0457 (7)0.0441 (7)0.0558 (9)0.0029 (5)0.0174 (6)0.0066 (6)
Geometric parameters (Å, º) top
C1—N11.463 (2)C9—N21.454 (2)
C1—C21.516 (3)C9—H9A0.9800
C1—H1A0.9900C9—H9B0.9800
C1—H1B0.9900C9—H9C0.9800
C2—C31.534 (2)C10—O11.214 (2)
C2—H2A0.9900C10—O21.351 (2)
C2—H2B0.9900C10—N11.353 (2)
C3—C61.494 (3)C11—O21.477 (2)
C3—C41.525 (2)C11—C131.508 (3)
C3—H31.0000C11—C141.516 (3)
C4—C51.513 (3)C11—C121.517 (3)
C4—H4A0.9900C12—H12A0.9800
C4—H4B0.9900C12—H12B0.9800
C5—N11.464 (2)C12—H12C0.9800
C5—H5A0.9900C13—H13A0.9800
C5—H5B0.9900C13—H13B0.9800
C6—N21.356 (2)C13—H13C0.9800
C6—C71.377 (2)C14—H14A0.9800
C7—C81.389 (3)C14—H14B0.9800
C7—H70.9500C14—H14C0.9800
C8—N31.323 (3)N2—N31.355 (2)
C8—H80.9500
N1—C1—C2110.50 (14)N2—C9—H9B109.5
N1—C1—H1A109.6H9A—C9—H9B109.5
C2—C1—H1A109.6N2—C9—H9C109.5
N1—C1—H1B109.6H9A—C9—H9C109.5
C2—C1—H1B109.6H9B—C9—H9C109.5
H1A—C1—H1B108.1O1—C10—O2124.54 (17)
C1—C2—C3111.88 (15)O1—C10—N1124.25 (17)
C1—C2—H2A109.2O2—C10—N1111.19 (15)
C3—C2—H2A109.2O2—C11—C13110.63 (16)
C1—C2—H2B109.2O2—C11—C14102.07 (14)
C3—C2—H2B109.2C13—C11—C14110.36 (16)
H2A—C2—H2B107.9O2—C11—C12110.10 (15)
C6—C3—C4111.67 (14)C13—C11—C12112.29 (17)
C6—C3—C2111.56 (15)C14—C11—C12110.95 (17)
C4—C3—C2108.97 (14)C11—C12—H12A109.5
C6—C3—H3108.2C11—C12—H12B109.5
C4—C3—H3108.2H12A—C12—H12B109.5
C2—C3—H3108.2C11—C12—H12C109.5
C5—C4—C3111.68 (14)H12A—C12—H12C109.5
C5—C4—H4A109.3H12B—C12—H12C109.5
C3—C4—H4A109.3C11—C13—H13A109.5
C5—C4—H4B109.3C11—C13—H13B109.5
C3—C4—H4B109.3H13A—C13—H13B109.5
H4A—C4—H4B107.9C11—C13—H13C109.5
N1—C5—C4110.87 (15)H13A—C13—H13C109.5
N1—C5—H5A109.5H13B—C13—H13C109.5
C4—C5—H5A109.5C11—C14—H14A109.5
N1—C5—H5B109.5C11—C14—H14B109.5
C4—C5—H5B109.5H14A—C14—H14B109.5
H5A—C5—H5B108.1C11—C14—H14C109.5
N2—C6—C7105.57 (17)H14A—C14—H14C109.5
N2—C6—C3122.99 (15)H14B—C14—H14C109.5
C7—C6—C3131.39 (16)C10—N1—C1123.62 (14)
C6—C7—C8105.30 (17)C10—N1—C5118.57 (15)
C6—C7—H7127.4C1—N1—C5114.12 (14)
C8—C7—H7127.4N3—N2—C6112.94 (15)
N3—C8—C7112.44 (17)N3—N2—C9118.98 (15)
N3—C8—H8123.8C6—N2—C9128.05 (17)
C7—C8—H8123.8C8—N3—N2103.74 (15)
N2—C9—H9A109.5C10—O2—C11121.27 (13)

Experimental details

Crystal data
Chemical formulaC14H23N3O2
Mr265.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)198
a, b, c (Å)11.356 (3), 11.735 (3), 11.245 (2)
β (°) 100.224 (3)
V3)1474.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.12 × 0.06
Data collection
DiffractometerSiemens P4 APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.990, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
14589, 3253, 2157
Rint0.063
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.162, 1.03
No. of reflections3253
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBasil, L. F., Meyers, A. I. & Hassner, A. (2002). Tetrahedron, 58, 207–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds