inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A polymorph structure of copper(II) hydrogenphosphite dihydrate

aDepartment of Physics–Chemistry, Henan Polytechnic University, Jiao Zuo 454150, People's Republic of China
*Correspondence e-mail: xcy78413@tom.com

(Received 7 January 2009; accepted 12 March 2009; online 19 March 2009)

The title compound, poly[[diaqua­copper(II)]-μ3-hydrogenphosphito], [Cu(HPO3)(H2O)2]n, (I), has been prepared by hydro­thermal synthesis at 393 K. Its non-centrosymmetric polymorph structure, (II), was known previously and has been redetermined at 193 (2) K [El Bali & Massa (2002[El Bali, B. & Massa, W. (2002). Acta Cryst. E58, i29-i31.]). Acta Cryst. E58, i29–i31]. The Cu atoms in (I) and (II) are square-pyramidal coordinated. A distorted octa­hedral geometry around the Cu atoms is considered by including the strongly elongated apical distances of 2.8716 (15) Å in (I) and 3.000 (1) Å in (II). The Cu⋯Cu separation of the dimeric unit is 3.1074 (3) Å. The secondary building units (SBU) (the Cu2O2 dimer and two HPO3 units) in (I) are inversion related and form a two-dimensional layered structure, with sheets parallel to the bc plane, whereas in the structure of (II), the chain elements are connected via screw-axis symmetry to form a three-dimensional microporous framework. In both polymorph structures, strong O—H⋯O hydrogen bonds are observed.

Related literature

For the structure of the noncentrosymmetric polymorph, see: Handlovič (1969[Handlovič, M. (1969). Acta Cryst. B25, 227-231.]) and El Bali & Massa (2002[El Bali, B. & Massa, W. (2002). Acta Cryst. E58, i29-i31.]). For a discussion on secondary building units (SBU), see: Biradha (2007[Biradha, K. (2007). Curr. Sci. 92, 584-585.]). For the structure of an open-framework zincophosphite built up from polyhedral 12-rings, see: Harrison et al. (2001[Harrison, W. T. A., Phillips, M. L. F. & Nenoff, T. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2459-2461.]).

Experimental

Crystal data
  • [Cu(HPO3)(H2O)2]

  • Mr = 179.55

  • Monoclinic, P 21 /c

  • a = 7.12940 (10) Å

  • b = 7.33460 (10) Å

  • c = 8.8313 (2) Å

  • β = 110.4280 (10)°

  • V = 432.76 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.32 mm−1

  • T = 296 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.288, Tmax = 0.345

  • 3641 measured reflections

  • 994 independent reflections

  • 980 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.049

  • S = 1.18

  • 994 reflections

  • 85 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O3 1.9293 (14)
Cu1—O1 1.9607 (14)
Cu1—O2 1.9774 (14)
Cu1—O4 1.9960 (14)
Cu1—O5 2.2396 (17)
Cu1—O3i 2.8716 (15)
O1—Cu1—O2 160.25 (6)
O3—Cu1—O4 177.82 (6)
O3—Cu1—O5 97.18 (6)
O2—Cu1—O5 104.95 (6)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1ii 0.878 (17) 1.81 (2) 2.658 (2) 162 (4)
O4—H4B⋯O2iii 0.890 (16) 1.864 (16) 2.728 (2) 163 (2)
O5—H5A⋯O2iii 0.867 (18) 2.18 (3) 2.925 (2) 143 (3)
O5—H5A⋯O3iv 0.867 (18) 2.60 (3) 3.380 (2) 151 (3)
O5—H5B⋯O4v 0.851 (18) 1.985 (18) 2.818 (2) 166 (3)
Symmetry codes: (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cu atoms in the asymmetric unit are pentahedrally coordinated and link three P atoms via phosphite O atoms (O1, O2, O3) with shorter distances and two water molecules (O4, O5) with longer distances (Fig. 1 and Table 1). A distorted octahedral geometry around the Cu atoms are considered when the strongly elongated apical Cu—O distances of 3.036 (14) Å (Handlovič, 1969), 3.000 (1) Å in II (El Bali & Massa, 2002), and 2.8716 (15) in I are included. The P atoms form the centers of a pseudo pyramid with the hydrogen phosphite groups, and each P links to three Cu via P—O—Cu bonds. The P—O bonds are in the range of 1.5178 (14) - 1.5337 (14) Å. The two-dimensional structure (Fig. 2) is built up from SBU (Biradha, 2007) (secondary building units, Fig.1), the corner sharing of tetra-meric units. One Cu atom links two P atom via O1 and O2. Two pentahedra Cu(H2O)2O3, and two pseudopyramids HPO3 form a dinucleus unit, noted as SBU. The Cu···Cu distance in the dimeric unit of I is 3.1074 (3) Å. The SBU and hydrogenphosphite polyhedra are connected into a one-dimensional chain by sharing the corner O3, and each chain links two other chains by sharing other atoms O3, forming a sheet along the bc-plane, containing 8-membered rings when the long Cu—O3c distance is neglected. In the structure of (CN3H6)2.Zn(HPO3)2, ZnO4 and HPO3building units form a 12-ring framework (Harrison et al., 2001). In both polymorph structures strong O—H···O hydrogen bonds are observed (Table 2).

Related literature top

For the structure of the non-centrosymmetric polymorph, see: Handlovič (1969) and El Bali & Massa (2002); for a discussion on secondary building units (SBU) see: Biradha (2007); for the structure of an open-framework zincophosphite built up from polyhedral 12-rings, see: Harrison et al. (2001).

Experimental top

All reagents were of analytical grade. The title sample was prepared by Cu(NO3)2, H2O, H3(PO3) and (C2H5)3N triethylamine in the molar ratio 1:144:5:11 and heated at 393 K for 8 d. The blue single crystals were filtered, washed with distilled water and dried in air.

Refinement top

The H atoms of the water molecules were located from a difference density map and were refined with distance restraints of d(H–H) = 1.40 (2) Å, d(O–H) = 0.90 (2) Å, and with isotropic displacement parameters. The H atom of the hydrogenphosphite group was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A section of the structure of (I) showing the centrosymmetric SBU with the edge-sharing distorted CuO6 octahedra. Displacement ellipsoids are drawn at the 50% probability level. Atoms labelled a, b, c are symmetry-related. Symmetry codes: (a = - x, -1/2 + y, 3/2 - z; (b = - x, 1/2 + y, 3/2 - z; (c = - x, - y, 1 - z).
[Figure 2] Fig. 2. The layer structure of (I), viewed down the a axis.
poly[[diaquacopper(II)]-µ3-hydrogenphosphito] top
Crystal data top
[Cu(HPO3)(H2O)2]F(000) = 356
Mr = 179.55Dx = 2.756 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1294 (1) ÅCell parameters from 3157 reflections
b = 7.3346 (1) Åθ = 3.1–27.5°
c = 8.8313 (2) ŵ = 5.32 mm1
β = 110.428 (1)°T = 296 K
V = 432.76 (1) Å3Block, blue
Z = 40.25 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
994 independent reflections
Radiation source: fine-focus sealed tube980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
h = 99
Tmin = 0.288, Tmax = 0.345k = 99
3641 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.4287P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
994 reflectionsΔρmax = 0.44 e Å3
85 parametersΔρmin = 0.42 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.134 (4)
Crystal data top
[Cu(HPO3)(H2O)2]V = 432.76 (1) Å3
Mr = 179.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1294 (1) ŵ = 5.32 mm1
b = 7.3346 (1) ÅT = 296 K
c = 8.8313 (2) Å0.25 × 0.25 × 0.20 mm
β = 110.428 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
994 independent reflections
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
980 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 0.345Rint = 0.023
3641 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0186 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.44 e Å3
994 reflectionsΔρmin = 0.42 e Å3
85 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.22809 (3)0.02792 (3)0.58956 (3)0.01035 (13)
P10.08713 (7)0.28227 (6)0.66809 (6)0.00990 (15)
O10.1259 (2)0.21752 (19)0.69683 (17)0.0145 (3)
O20.2458 (2)0.1406 (2)0.42031 (17)0.0144 (3)
O30.1081 (2)0.1660 (2)0.67218 (17)0.0173 (3)
O40.3581 (2)0.22142 (19)0.50133 (17)0.0129 (3)
O50.5311 (3)0.0183 (2)0.7831 (2)0.0234 (4)
H10.116 (4)0.420 (4)0.582 (3)0.019 (6)*
H4A0.298 (4)0.262 (5)0.403 (3)0.056 (12)*
H4B0.482 (3)0.197 (4)0.506 (3)0.022 (7)*
H5A0.630 (4)0.073 (4)0.766 (4)0.051 (10)*
H5B0.580 (5)0.075 (3)0.841 (4)0.043 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01143 (18)0.01023 (17)0.01156 (17)0.00141 (8)0.00675 (12)0.00082 (7)
P10.0107 (3)0.0093 (2)0.0109 (2)0.00038 (17)0.00539 (19)0.00079 (16)
O10.0100 (7)0.0186 (7)0.0154 (7)0.0006 (5)0.0049 (6)0.0061 (5)
O20.0115 (7)0.0159 (7)0.0179 (7)0.0029 (5)0.0076 (6)0.0055 (5)
O30.0229 (8)0.0169 (7)0.0156 (7)0.0058 (6)0.0109 (6)0.0018 (6)
O40.0118 (7)0.0148 (6)0.0124 (6)0.0009 (5)0.0046 (5)0.0008 (5)
O50.0128 (8)0.0286 (9)0.0256 (9)0.0001 (6)0.0027 (7)0.0126 (7)
Geometric parameters (Å, º) top
Cu1—O31.9293 (14)P1—O2i1.5337 (14)
Cu1—O11.9607 (14)P1—H11.24 (3)
Cu1—O21.9774 (14)O2—P1i1.5337 (14)
Cu1—O41.9960 (14)O3—P1iii1.5178 (14)
Cu1—O52.2396 (17)O4—H4A0.878 (17)
Cu1—O3i2.8716 (15)O4—H4B0.890 (16)
P1—O3ii1.5178 (14)O5—H5A0.867 (18)
P1—O11.5254 (15)O5—H5B0.851 (18)
O3—Cu1—O192.95 (6)O3ii—P1—H1108.6 (12)
O3—Cu1—O288.78 (6)O1—P1—H1107.4 (13)
O1—Cu1—O2160.25 (6)O2i—P1—H1107.6 (13)
O3—Cu1—O4177.82 (6)P1—O1—Cu1131.06 (9)
O1—Cu1—O489.19 (6)P1i—O2—Cu1125.31 (8)
O2—Cu1—O489.35 (6)P1iii—O3—Cu1137.43 (9)
O3—Cu1—O597.18 (6)Cu1—O4—H4A120 (2)
O1—Cu1—O594.36 (6)Cu1—O4—H4B115.5 (18)
O2—Cu1—O5104.95 (6)H4A—O4—H4B104 (2)
O4—Cu1—O582.23 (6)Cu1—O5—H5A119 (2)
O3ii—P1—O1109.79 (8)Cu1—O5—H5B124 (2)
O3ii—P1—O2i110.37 (8)H5A—O5—H5B107 (2)
O1—P1—O2i112.85 (8)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1iv0.88 (2)1.81 (2)2.658 (2)162 (4)
O4—H4B···O2v0.89 (2)1.86 (2)2.728 (2)163 (2)
O5—H5A···O2v0.87 (2)2.18 (3)2.925 (2)143 (3)
O5—H5A···O3vi0.87 (2)2.60 (3)3.380 (2)151 (3)
O5—H5B···O4vii0.85 (2)1.99 (2)2.818 (2)166 (3)
Symmetry codes: (iv) x, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(HPO3)(H2O)2]
Mr179.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.1294 (1), 7.3346 (1), 8.8313 (2)
β (°) 110.428 (1)
V3)432.76 (1)
Z4
Radiation typeMo Kα
µ (mm1)5.32
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.288, 0.345
No. of measured, independent and
observed [I > 2σ(I)] reflections
3641, 994, 980
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.049, 1.18
No. of reflections994
No. of parameters85
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.42

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu1—O31.9293 (14)Cu1—O41.9960 (14)
Cu1—O11.9607 (14)Cu1—O52.2396 (17)
Cu1—O21.9774 (14)Cu1—O3i2.8716 (15)
O1—Cu1—O2160.25 (6)O3—Cu1—O597.18 (6)
O3—Cu1—O4177.82 (6)O2—Cu1—O5104.95 (6)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1ii0.878 (17)1.81 (2)2.658 (2)162 (4)
O4—H4B···O2iii0.890 (16)1.864 (16)2.728 (2)163 (2)
O5—H5A···O2iii0.867 (18)2.18 (3)2.925 (2)143 (3)
O5—H5A···O3iv0.867 (18)2.60 (3)3.380 (2)151 (3)
O5—H5B···O4v0.851 (18)1.985 (18)2.818 (2)166 (3)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x+1, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Co-editor for help with the paper.

References

First citationBiradha, K. (2007). Curr. Sci. 92, 584–585.  CAS Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Bali, B. & Massa, W. (2002). Acta Cryst. E58, i29–i31.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHandlovič, M. (1969). Acta Cryst. B25, 227–231.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHarrison, W. T. A., Phillips, M. L. F. & Nenoff, T. M. (2001). J. Chem. Soc. Dalton Trans. pp. 2459–2461.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds