metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m380-m381

Di­aqua­bis­(2,2′-bi­imidazole)cobalt(II) 4,4′-di­carb­oxy­bi­phenyl-3,3′-di­car­boxylate

aCollege of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China, and bState Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: davidkj660825@163.com

(Received 20 January 2009; accepted 3 March 2009; online 11 March 2009)

In the title compound, [Co(C6H6N4)2(H2O)2](C16H8O8), the CoII cation and the organic anion occupy different crystallographic inversion centres and, as a consequence, the asymmetric unit comprises two half-mol­ecules. The benzene groups are coplanar. The four coordinating N atoms of the two bidentate biimidazole ligands define the equatorial plane of a slightly distorted octa­hedral CoO2N4 geometry, and the water O atoms lie in the axial coordination sites. Translational (a,[\overline b]) and inversion-related symmetry operations link the Co complex mol­ecules and the negatively charged carboxyl­ate anions via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into sheets parallel to ([\overline{1}]01). The coordinated water mol­ecules connect the sheets through O—H⋯O hydrogen bonds, forming a three-dimensional framework. In addition, two intra­molecular O—H⋯O hydrogen bonds are observed between the carboxyl and carboxyl­ate groups.

Related literature

For a review on organic–inorganic hybrid materials, see: Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]). For a tetra­nuclear cobalt complex with a 1,2,4-benzene­tricarboxyl­ate linker, see: Jia et al. (2007[Jia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem. 10, 265-268.]). For a highly porous metal-organic framework with a benzene­dicarboxyl­ate linker, see: Li et al. (1999[Li, H., Eddaoudi, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]). For coordination polymers of Ag(I), Cd(II) and Zn(II) with the flexible 2-(1H-imidazole-1-yl)acetic acid linker, see: Wang et al. (2007[Wang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct. 831, 61-68.]). For the structure of 1,1′-biphenyl-2,3,3′,4′-tetra­carboxylic acid monohydrate and related structures cited therein, see: Jiang et al. (2008[Jiang, Y., Men, J., Liu, C.-Y., Zhang, Y. & Gao, G.-W. (2008). Acta Cryst. E64, o846.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H6N4)2(H2O)2](C16H8O8)

  • Mr = 691.48

  • Triclinic, [P \overline 1]

  • a = 8.2272 (16) Å

  • b = 9.772 (2) Å

  • c = 10.484 (2) Å

  • α = 63.81 (3)°

  • β = 67.93 (3)°

  • γ = 84.03 (3)°

  • V = 699.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.42 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.760, Tmax = 0.874

  • 4982 measured reflections

  • 2603 independent reflections

  • 2527 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.01

  • 2603 reflections

  • 227 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O5 2.0882 (19)
Co1—N1 2.1412 (16)
Co1—N3 2.1579 (16)
O5—Co1—N1 88.32 (7)
N1—Co1—N3i 100.77 (6)
O5—Co1—N3 87.82 (7)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1ii 0.92 (2) 1.87 (2) 2.791 (3) 178.8 (18)
N4—H4A⋯O2ii 0.920 (18) 1.897 (19) 2.808 (3) 170.3 (19)
O5—H1W⋯O1iii 0.82 (2) 1.93 (2) 2.739 (3) 169 (2)
O5—H2W⋯O4i 0.81 (2) 1.88 (2) 2.673 (3) 163 (2)
O3—H3⋯O2 0.82 1.62 2.432 (3) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs (Wang et al. 2007), but also for their potential applications, e. g. as organic-inorganic hybrid materials (Hagrman et al., 1999), highly porous metal-organic framework (Li et al., 1999), magnetochemistry (Jia et al., 2007). In contrast, the two ionic components of the title structure interact with N—H···O and O—H···O hydrogen bonds to form a three-dimensional framework.

As shown in Fig. 1, the Co atom (site symmetry 1) is bonded to two aqua and two bidentate biimidizole ligands, to result in a slightly distorterd octahedral CoO2N4 geometry for the central metal. The CoII cation and the organic anion occupy different crystallographic inversion centres, and as a consequence the asymmetric unit of the cell comprises two half molecules (Z' = 1/2), and the benzene groups are co-planar. The four nitrogen atoms belonging to two biimidizole ligands lie in the equatorial plane and the two aqua oxygen atoms lie in the axial coordination sites. Selected bond lengths and angles around Co are listed in Table 1. The 1,1'-biphenyl-3,3'-dicarboxylate-4,4'-dicarboxylic acid acts as a negative electron balance. With three kinds of hydrogen bonds (Table 2) of N2—H2A···O1, N4—H4A···O2, and O5—H1W···O1, two-dimensional planes are formed. Furthermore, a three-dimensional framework (Fig. 2) is generated with the intermolecular hydrogen bonding contact O5—H2W···O4 along the [-1 0 1] direction. The organic anion has two intramolecular O3—H3···O2 hydrogen bonds between the carboxylic acid units and the carboxylate acceptors (Table 2). In contrast to the co-planar biphenyl group of the title compound, a dihedral angle of 42.30 (11)° between the two benzene rings was observed in the structure of 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid monohydrate (Jiang et al. 2008).

Related literature top

For a review on organic–inorganic hybrid materials, see: Hagrman et al. (1999). For a tetranuclear cobalt complex with a 1,2,4-benzenetricarboxylate linker, see: Jia et al. (2007). For a highly porous metal-organic framework with a benzenedicarboxylate linker, see: Li et al. (1999). For coordination polymers of Ag(I), Cd(II) and Zn(II) with the flexible 2-(1H-imidazole-1-yl)acetic acid linker, see: Wang et al. (2007). For the structure of 1,1'-biphenyl-2,3,3',4'-tetracarboxylic acid monohydrate and related structures cited therein, see: Jiang et al. (2008).

Experimental top

All chemicals and Teflon-lined stainless steel autoclave were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. A mixture of 3,3',4,4'-biphenyl tetracarboxylic acid (0.1 mmoL), cobalt(II) acetate (0.1 mmoL), and diimdazole (0.1 mmoL) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Yellow crystals suitable for the X-ray experiment were obtained.

Refinement top

The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of d(H–H) = 1.38 (2) Å, d(O–H) = 0.88 (2) Å, and with a fixed Uiso of 0.056 Å2. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 10% probability level. Symmetry-related atoms are unlabelled. Symmetry code for the Co-complex: (1 - x, 1 - y, 1 - z); symmetry code for the organic anion: (1 - x, 2 - y, 2 - z).
[Figure 2] Fig. 2. A packing view of the title compound. Hydrogen bonds are marked by dashed lines.
Diaquabis(2,2'-biimidazole)cobalt(II) 4,4'-dicarboxybiphenyl-3,3'-dicarboxylate top
Crystal data top
[Co(C6H6N4)2(H2O)2](C16H8O8)Z = 1
Mr = 691.48F(000) = 355
Triclinic, P1Dx = 1.643 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2272 (16) ÅCell parameters from 2603 reflections
b = 9.772 (2) Åθ = 3.1–25.8°
c = 10.484 (2) ŵ = 0.69 mm1
α = 63.81 (3)°T = 293 K
β = 67.93 (3)°Block, colorless
γ = 84.03 (3)°0.42 × 0.26 × 0.20 mm
V = 699.0 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2603 independent reflections
Radiation source: fine-focus sealed tube2527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.8°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 109
Tmin = 0.760, Tmax = 0.874k = 1111
4982 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.045P)2 + 0.376P]
where P = (Fo2 + 2Fc2)/3
2603 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.31 e Å3
5 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Co(C6H6N4)2(H2O)2](C16H8O8)γ = 84.03 (3)°
Mr = 691.48V = 699.0 (2) Å3
Triclinic, P1Z = 1
a = 8.2272 (16) ÅMo Kα radiation
b = 9.772 (2) ŵ = 0.69 mm1
c = 10.484 (2) ÅT = 293 K
α = 63.81 (3)°0.42 × 0.26 × 0.20 mm
β = 67.93 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2527 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.874Rint = 0.022
4982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0335 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
2603 reflectionsΔρmin = 0.21 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.03059 (13)
C10.7400 (3)0.5910 (2)0.6513 (3)0.0388 (5)
H10.70360.68650.64460.047*
C20.8671 (3)0.5187 (2)0.7049 (3)0.0403 (5)
H20.93230.55420.74150.048*
C30.7617 (2)0.3779 (2)0.6368 (2)0.0303 (4)
C40.7231 (2)0.2591 (2)0.6037 (2)0.0305 (4)
C50.5986 (3)0.1500 (2)0.5229 (3)0.0396 (5)
H50.52660.13110.48120.047*
C60.7143 (3)0.0532 (2)0.5751 (3)0.0428 (5)
H60.73550.04250.57620.051*
C70.2215 (3)0.6649 (2)0.8670 (2)0.0355 (4)
C80.2957 (2)0.7806 (2)0.8950 (2)0.0300 (4)
C90.4327 (3)0.7276 (2)0.9485 (2)0.0372 (5)
H90.47100.63190.95770.045*
C100.5135 (3)0.8106 (2)0.9882 (3)0.0383 (5)
H100.60510.77081.02220.046*
C110.4595 (2)0.9535 (2)0.9779 (2)0.0289 (4)
C120.3260 (2)1.0084 (2)0.9211 (2)0.0301 (4)
H120.28941.10460.91160.036*
C130.2436 (2)0.9278 (2)0.8777 (2)0.0279 (4)
C140.1084 (2)1.0170 (2)0.8107 (2)0.0330 (4)
N10.6735 (2)0.50249 (18)0.60857 (19)0.0340 (4)
N20.8799 (2)0.3839 (2)0.6943 (2)0.0365 (4)
H2A0.951 (3)0.307 (2)0.726 (2)0.044*
N30.6043 (2)0.27901 (17)0.54115 (19)0.0335 (4)
N40.7934 (2)0.12422 (19)0.6258 (2)0.0371 (4)
H4A0.869 (2)0.078 (2)0.676 (2)0.045*
O10.0983 (2)1.15279 (16)0.7860 (2)0.0492 (4)
O20.0097 (2)0.95144 (19)0.7838 (2)0.0552 (5)
O30.0823 (2)0.68970 (19)0.8329 (2)0.0546 (4)
H30.05130.77490.82410.082*
O40.2931 (2)0.54625 (18)0.8800 (2)0.0500 (4)
O50.7116 (2)0.58986 (18)0.29083 (18)0.0469 (4)
H1W0.763 (3)0.6721 (18)0.259 (3)0.056*
H2W0.730 (3)0.557 (2)0.228 (2)0.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0353 (2)0.0244 (2)0.0457 (2)0.00797 (14)0.02832 (17)0.01710 (17)
C10.0454 (11)0.0331 (11)0.0579 (13)0.0098 (9)0.0324 (10)0.0271 (10)
C20.0445 (11)0.0408 (12)0.0564 (13)0.0074 (9)0.0326 (10)0.0281 (10)
C30.0306 (9)0.0293 (10)0.0390 (10)0.0070 (7)0.0211 (8)0.0158 (8)
C40.0343 (10)0.0251 (9)0.0380 (10)0.0072 (7)0.0206 (8)0.0140 (8)
C50.0514 (12)0.0301 (10)0.0528 (12)0.0054 (9)0.0327 (10)0.0206 (9)
C60.0559 (13)0.0272 (10)0.0599 (13)0.0106 (9)0.0321 (11)0.0240 (10)
C70.0417 (11)0.0327 (11)0.0414 (11)0.0038 (8)0.0214 (9)0.0194 (9)
C80.0341 (9)0.0292 (10)0.0327 (9)0.0033 (7)0.0170 (8)0.0150 (8)
C90.0479 (11)0.0277 (10)0.0519 (12)0.0141 (8)0.0317 (10)0.0222 (9)
C100.0468 (11)0.0320 (10)0.0561 (12)0.0159 (9)0.0388 (10)0.0227 (9)
C110.0341 (9)0.0250 (9)0.0348 (9)0.0058 (7)0.0202 (8)0.0139 (8)
C120.0337 (9)0.0254 (9)0.0389 (10)0.0071 (7)0.0210 (8)0.0153 (8)
C130.0286 (9)0.0276 (9)0.0326 (9)0.0043 (7)0.0176 (7)0.0126 (8)
C140.0321 (10)0.0332 (11)0.0443 (11)0.0072 (8)0.0229 (8)0.0197 (9)
N10.0382 (9)0.0291 (9)0.0491 (10)0.0093 (7)0.0287 (8)0.0205 (8)
N20.0371 (9)0.0364 (9)0.0505 (10)0.0116 (7)0.0303 (8)0.0215 (8)
N30.0399 (9)0.0260 (8)0.0451 (9)0.0066 (7)0.0273 (8)0.0159 (7)
N40.0416 (9)0.0299 (9)0.0503 (10)0.0115 (7)0.0286 (8)0.0187 (8)
O10.0495 (9)0.0308 (8)0.0865 (12)0.0132 (7)0.0501 (9)0.0234 (8)
O20.0614 (10)0.0485 (9)0.0989 (13)0.0239 (8)0.0639 (10)0.0445 (9)
O30.0583 (10)0.0429 (9)0.0953 (13)0.0131 (7)0.0519 (10)0.0402 (10)
O40.0654 (10)0.0392 (9)0.0746 (11)0.0165 (7)0.0444 (9)0.0368 (8)
O50.0579 (10)0.0382 (9)0.0516 (9)0.0085 (7)0.0184 (8)0.0244 (7)
Geometric parameters (Å, º) top
Co1—O5i2.0882 (19)C7—O41.220 (3)
Co1—O52.0882 (19)C7—O31.293 (2)
Co1—N12.1412 (16)C7—C81.519 (3)
Co1—N1i2.1412 (16)C8—C91.397 (3)
Co1—N3i2.1579 (16)C8—C131.410 (3)
Co1—N32.1579 (16)C9—C101.375 (3)
C1—C21.359 (3)C9—H90.9300
C1—N11.369 (2)C10—C111.390 (3)
C1—H10.9300C10—H100.9300
C2—N21.360 (3)C11—C121.391 (3)
C2—H20.9300C11—C11ii1.490 (3)
C3—N11.325 (2)C12—C131.395 (3)
C3—N21.340 (2)C12—H120.9300
C3—C41.444 (3)C13—C141.528 (3)
C4—N31.324 (2)C14—O11.235 (2)
C4—N41.341 (2)C14—O21.261 (2)
C5—C61.360 (3)N2—H2A0.921 (10)
C5—N31.364 (2)N4—H4A0.918 (10)
C5—H50.9300O3—H30.8200
C6—N41.366 (3)O5—H1W0.82 (2)
C6—H60.9300O5—H2W0.81 (2)
O5i—Co1—O5180C13—C8—C7129.44 (17)
O5i—Co1—N191.68 (7)C10—C9—C8122.91 (18)
O5—Co1—N188.32 (7)C10—C9—H9118.5
O5i—Co1—N1i88.32 (7)C8—C9—H9118.5
N1—Co1—N1i180C9—C10—C11120.56 (18)
O5i—Co1—N3i87.82 (7)C9—C10—H10119.7
O5—Co1—N3i92.18 (7)C11—C10—H10119.7
N1—Co1—N3i100.77 (6)C10—C11—C12116.73 (17)
N1i—Co1—N3i79.23 (6)C10—C11—C11ii122.6 (2)
O5i—Co1—N392.18 (7)C12—C11—C11ii120.7 (2)
O5—Co1—N387.82 (7)C11—C12—C13123.93 (17)
N1—Co1—N379.23 (6)C11—C12—H12118.0
N3i—Co1—N3180C13—C12—H12118.0
C2—C1—N1109.90 (17)C12—C13—C8118.32 (16)
C2—C1—H1125.0C12—C13—C14113.67 (16)
N1—C1—H1125.0C8—C13—C14127.98 (16)
N2—C2—C1106.11 (17)O1—C14—O2121.81 (18)
N2—C2—H2126.9O1—C14—C13118.10 (17)
C1—C2—H2126.9O2—C14—C13120.09 (17)
N1—C3—N2111.51 (17)C3—N1—C1105.05 (16)
N1—C3—C4119.29 (16)C3—N1—Co1111.21 (12)
N2—C3—C4129.20 (17)C1—N1—Co1143.48 (13)
N3—C4—N4111.61 (17)C3—N2—C2107.42 (17)
N3—C4—C3119.34 (16)C3—N2—H2A125.3 (15)
N4—C4—C3129.05 (17)C2—N2—H2A127.2 (15)
C6—C5—N3109.48 (18)C4—N3—C5105.57 (16)
C6—C5—H5125.3C4—N3—Co1110.75 (12)
N3—C5—H5125.3C5—N3—Co1143.64 (14)
C5—C6—N4106.57 (17)C4—N4—C6106.77 (17)
C5—C6—H6126.7C4—N4—H4A129.4 (15)
N4—C6—H6126.7C6—N4—H4A123.4 (15)
O4—C7—O3120.13 (18)C7—O3—H3109.5
O4—C7—C8119.10 (18)Co1—O5—H1W121.0 (16)
O3—C7—C8120.75 (17)Co1—O5—H2W121.0 (16)
C9—C8—C13117.47 (17)H1W—O5—H2W116.1 (17)
C9—C8—C7113.08 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1iii0.92 (2)1.87 (2)2.791 (3)179 (2)
N4—H4A···O2iii0.92 (2)1.90 (2)2.808 (3)170 (2)
O5—H1W···O1iv0.82 (2)1.93 (2)2.739 (3)169 (2)
O5—H2W···O4i0.81 (2)1.88 (2)2.673 (3)163 (2)
O3—H3···O20.821.622.432 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y1, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C6H6N4)2(H2O)2](C16H8O8)
Mr691.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2272 (16), 9.772 (2), 10.484 (2)
α, β, γ (°)63.81 (3), 67.93 (3), 84.03 (3)
V3)699.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.42 × 0.26 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.760, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
4982, 2603, 2527
Rint0.022
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.01
No. of reflections2603
No. of parameters227
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O52.0882 (19)Co1—N32.1579 (16)
Co1—N12.1412 (16)
O5—Co1—N188.32 (7)O5—Co1—N387.82 (7)
N1—Co1—N3i100.77 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.92 (2)1.87 (2)2.791 (3)178.8 (18)
N4—H4A···O2ii0.920 (18)1.897 (19)2.808 (3)170.3 (19)
O5—H1W···O1iii0.82 (2)1.93 (2)2.739 (3)169 (2)
O5—H2W···O4i0.81 (2)1.88 (2)2.673 (3)163 (2)
O3—H3···O20.821.622.432 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Foundation of the Education Committee of Fujian Province (grant No. JA08103), and the Foundation of Daiichi Pharmaceutical (Beijing) Co, Ltd (grant No. 06B004).

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationJia, H. P., Li, W., Ju, Z. F. & Zhang, J. (2007). Inorg. Chem. 10, 265–268.  CrossRef CAS Google Scholar
First citationJiang, Y., Men, J., Liu, C.-Y., Zhang, Y. & Gao, G.-W. (2008). Acta Cryst. E64, o846.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Eddaoudi, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. T., Tang, G. M., Wu, Y., Qin, X. Y. & Qin, D. W. (2007). J. Mol. Struct. 831, 61–68.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m380-m381
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds