metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m361-m362

Poly[bis­­(methanol-κO)tris­­(μ-pyrimidine-κ2N:N′)tetra­kis(thio­cyanato-κN)dinickel(II)]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: mwriedt@ac.uni-kiel.de

(Received 12 February 2009; accepted 17 February 2009; online 6 March 2009)

In the crystal structure of the title compound, [Ni2(NCS)4(C4H4N2)3(CH3OH)2]n, each nickel(II) cation is coordinated by three N-bonded pyrimidine ligands, two N-bonded thio­cyanate anions and one O-bonded methanol mol­ecule in a distorted octa­hedral environment. The asymmetric unit consists of one nickel cation, two thio­cyanate anions and one methanol mol­ecule in general positions, as well as one pyrimidine ligand located around a twofold rotation axis. The crystal structure consists of μ-N:N′ pyrimidine-bridged zigzag-like nickel thio­cyanate chains; these are further linked by μ-N:N-bridging pyrimidine ligands into layers which are stacked perpendicular to the b axis. The layers are connected via weak O—H⋯S hydrogen bonding.

Related literature

For related pyrimidine structures, see: Lloret et al. (1998[Lloret, F., Munno, G. D., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. Engl. 37, 135-138.]); Näther et al. (2007[Näther, C., Bhosekar, G. & Jess, I. (2007). Eur. J. Inorg. Chem. pp. 5353-5359.]); Näther & Greve (2003[Näther, C. & Greve, J. (2003). J. Solid State Chem. 176, 259-265.]). For general background, see: Wriedt et al. (2008[Wriedt, M., Jess, I. & Näther, C. (2008). Eur. J. Inorg. Chem. pp. 363-372.]) and literature cited therein.

[Scheme 1]

Experimental

Crystal data
  • [Ni2(NCS)4(C4H4N2)3(CH4O)2]

  • Mr = 654.10

  • Orthorhombic, F d d 2

  • a = 20.0624 (4) Å

  • b = 32.5018 (6) Å

  • c = 8.0268 (2) Å

  • V = 5233.99 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 80 K

  • 0.19 × 0.09 × 0.03 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.813, Tmax = 0.936

  • 26228 measured reflections

  • 3743 independent reflections

  • 3659 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.048

  • S = 1.09

  • 3743 reflections

  • 170 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1746 Friedel pairs

  • Flack parameter: 0.092 (7)

Table 1
Selected geometric parameters (Å, °)

Ni1—N31 2.0334 (14)
Ni1—N21 2.0376 (13)
Ni1—O41 2.1053 (12)
Ni1—N11 2.1118 (13)
Ni1—N2i 2.1200 (13)
Ni1—N1 2.1244 (13)
Symmetry code: (i) [-x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O41—H1O4⋯S21ii 0.80 (3) 2.50 (3) 3.2474 (14) 154 (2)
Symmetry code: (ii) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

Recently, we have shown that new ligand deficient coordination polymers with interesting magnetic properties can be prepared by thermal decomposition of suitable ligand rich precursor compounds (Näther & Greve, 2003; Wriedt et al., 2008; and Näther et al., 2007). In our ongoing investigation on the synthesis, structures and properties of new coordination polymers based on paramagnetic metal pseudohalides and N-donor ligands (Lloret et al. 1998), we have reacted nickel(II) thiocyanate with pyrimidine in methanol. In this reaction single crystals of the title compound has been formed.

The 2:3 title compound [Ni(SCN)2(pyrimidine)3*2MeOH]n (Fig. 1) represents a two-dimensional coordination polymer, which consists of µ-1,3-(N,N) pyrimidine bridged zigzag like nickel thiocyanates chains, which are further linked by µ-1,3-(N,N) bridged pyrimidine ligands into layers (Fig. 2 and 3). Within each layer the nickel cations are bridged by three µ-1,3-(N,N') pyrimidine ligands and are further terminal coordinated by two N-bonded thiocyanate anions and one O-bonded methanol molecule. Thus, each nickel cation is octahedrally coordinated. The asymmetric unit consists of one nickel cation, two thiocyanate anions and one methanol molecule in general position as well as one pyrimidine ligand located around a twofold rotation axis. The Ni—NCS distances amount to 2.0334 (14) and 2.0376 (13) Å and the Ni—Npyrimidine distances range from 2.1118 (13) to 2.1244 (13) Å as well as the angles around the iron cations range between 86.62 (5) and 177.66 (5)° (Tab. 1). The shortest intra- and interchain Ni···Ni distances amount to 5.9470 (1) and 8.4023 (1) Å, respectively.

Related literature top

For related pyrimidine structures, see: Lloret et al. (1998); Näther et al. (2007); Näther & Greve (2003). For general background, see: Wriedt et al. (2008) and literature cited therein.

Experimental top

Ni(SCN)2, pyrimidine and methanol were obtained from Alfa Aesar. 0.125 mmol (21.5 mg) Ni(SCN)2, 0.25 mmol (20.0 mg) pyrimidine and 0.5 ml methanol were transfered in a closed test-tube. The mixture was heated at 120 °C for three days. After cooling green needle-shaped single crystals of the title compound were obtained in a heterogenous mixture.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with Ueq(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.95 Å.

The absolute structure was determined on the bases of 1746 Friedel pairs. The crystal was racemically twinned and therefore a twin refinement was performed (BASF: 0.09169 with e.s.d.: 0.00739).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x+1, -y+1/2, z+1/2; (ii) -x+3/2, -y+1/2, z.]
[Figure 2] Fig. 2. The crystal structure of the title compound with view along the b axis.
[Figure 3] Fig. 3. The crystal structure of the title compound with view along the c axis.
Poly[bis(methanol-κO)tris(µ-pyrimidine- κ2N:N')tetrakis(thiocyanato-κN)dinickel(II)] top
Crystal data top
[Ni2(NCS)4(C4H4N2)3(CH4O)2]F(000) = 2672
Mr = 654.10Dx = 1.660 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 26829 reflections
a = 20.0624 (4) Åθ = 2.4–30.2°
b = 32.5018 (6) ŵ = 1.80 mm1
c = 8.0268 (2) ÅT = 80 K
V = 5233.99 (19) Å3Needle, green
Z = 80.19 × 0.09 × 0.03 mm
Data collection top
Stoe IPDS-2
diffractometer
3743 independent reflections
Radiation source: fine-focus sealed tube3659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 29.8°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 2828
Tmin = 0.813, Tmax = 0.936k = 4545
26228 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0258P)2 + 3.6623P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3743 reflectionsΔρmax = 0.34 e Å3
170 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1746 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0917 (74)
Crystal data top
[Ni2(NCS)4(C4H4N2)3(CH4O)2]V = 5233.99 (19) Å3
Mr = 654.10Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 20.0624 (4) ŵ = 1.80 mm1
b = 32.5018 (6) ÅT = 80 K
c = 8.0268 (2) Å0.19 × 0.09 × 0.03 mm
Data collection top
Stoe IPDS-2
diffractometer
3743 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
3659 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.936Rint = 0.043
26228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Δρmax = 0.34 e Å3
S = 1.09Δρmin = 0.21 e Å3
3743 reflectionsAbsolute structure: Flack (1983), 1746 Friedel pairs
170 parametersAbsolute structure parameter: 0.0917 (74)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.606548 (9)0.227000 (5)0.78384 (2)0.01902 (4)
N10.55175 (7)0.27249 (4)0.65206 (17)0.0215 (2)
N20.47332 (7)0.29025 (4)0.44204 (17)0.0223 (2)
C10.50701 (7)0.26330 (4)0.5344 (2)0.0221 (2)
H10.49850.23500.51490.026*
C20.48569 (8)0.33035 (5)0.4691 (2)0.0254 (3)
H20.46340.35050.40360.030*
C30.52997 (9)0.34281 (5)0.5898 (2)0.0270 (3)
H30.53790.37120.61030.032*
C40.56250 (9)0.31286 (5)0.6799 (2)0.0256 (3)
H40.59330.32080.76380.031*
N110.69268 (6)0.24119 (4)0.64396 (16)0.0216 (2)
C110.75000.25000.7204 (3)0.0221 (4)
H110.75000.25000.83880.027*
C130.75000.25000.3882 (3)0.0322 (5)
H130.75000.25000.26980.039*
C140.69298 (8)0.24151 (6)0.4778 (2)0.0275 (3)
H140.65280.23570.41960.033*
N210.58003 (7)0.18291 (4)0.61601 (18)0.0257 (3)
C210.55990 (7)0.15388 (4)0.5486 (2)0.0223 (3)
S210.53215 (3)0.113396 (13)0.45037 (6)0.03346 (9)
N310.63443 (7)0.26781 (4)0.96274 (18)0.0249 (3)
C310.63460 (8)0.29113 (5)1.07238 (19)0.0228 (3)
S310.63423 (3)0.323347 (15)1.22718 (6)0.03821 (11)
O410.66278 (7)0.18126 (4)0.90523 (16)0.0300 (3)
C410.67557 (12)0.17680 (6)1.0780 (3)0.0418 (5)
H41A0.65910.20111.13750.063*
H41B0.72370.17401.09620.063*
H41C0.65280.15221.11980.063*
H1O40.6830 (14)0.1640 (8)0.854 (3)0.047 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01457 (7)0.02028 (8)0.02220 (8)0.00051 (7)0.00029 (7)0.00255 (7)
N10.0171 (6)0.0219 (6)0.0254 (6)0.0014 (4)0.0012 (4)0.0006 (5)
N20.0169 (6)0.0217 (5)0.0282 (6)0.0005 (5)0.0006 (5)0.0003 (5)
C10.0175 (6)0.0196 (5)0.0291 (6)0.0006 (4)0.0011 (6)0.0018 (6)
C20.0253 (8)0.0222 (6)0.0287 (7)0.0000 (5)0.0014 (6)0.0019 (6)
C30.0329 (9)0.0193 (6)0.0287 (7)0.0039 (6)0.0002 (6)0.0016 (5)
C40.0276 (8)0.0239 (6)0.0254 (7)0.0048 (6)0.0021 (6)0.0014 (5)
N110.0165 (6)0.0253 (6)0.0231 (6)0.0003 (5)0.0005 (5)0.0011 (4)
C110.0173 (9)0.0262 (9)0.0230 (9)0.0002 (7)0.0000.000
C130.0257 (12)0.0499 (15)0.0208 (10)0.0044 (10)0.0000.000
C140.0202 (7)0.0376 (8)0.0247 (7)0.0016 (6)0.0022 (6)0.0019 (6)
N210.0230 (6)0.0245 (6)0.0296 (7)0.0003 (5)0.0028 (5)0.0053 (5)
C210.0183 (6)0.0246 (6)0.0239 (6)0.0029 (5)0.0015 (5)0.0018 (5)
S210.0355 (2)0.02680 (18)0.0381 (2)0.00436 (16)0.00331 (18)0.00964 (16)
N310.0222 (6)0.0263 (6)0.0262 (6)0.0024 (5)0.0006 (5)0.0035 (5)
C310.0177 (6)0.0241 (6)0.0265 (8)0.0009 (5)0.0005 (5)0.0012 (5)
S310.0431 (3)0.0360 (2)0.0355 (2)0.00220 (19)0.00501 (19)0.01510 (18)
O410.0285 (6)0.0306 (6)0.0308 (6)0.0096 (5)0.0014 (5)0.0020 (5)
C410.0516 (12)0.0336 (9)0.0403 (10)0.0021 (8)0.0217 (9)0.0030 (7)
Geometric parameters (Å, º) top
Ni1—N312.0334 (14)N11—C141.334 (2)
Ni1—N212.0376 (13)N11—C111.3346 (16)
Ni1—O412.1053 (12)C11—N11iii1.3346 (16)
Ni1—N112.1118 (13)C11—H110.9500
Ni1—N2i2.1200 (13)C13—C141.379 (2)
Ni1—N12.1244 (13)C13—C14iii1.379 (2)
N1—C11.337 (2)C13—H130.9500
N1—C41.348 (2)C14—H140.9500
N2—C11.332 (2)N21—C211.160 (2)
N2—C21.3444 (19)C21—S211.6320 (16)
N2—Ni1ii2.1200 (13)N31—C311.161 (2)
C1—H10.9500C31—S311.6250 (16)
C2—C31.376 (2)O41—C411.418 (2)
C2—H20.9500O41—H1O40.80 (3)
C3—C41.377 (2)C41—H41A0.9800
C3—H30.9500C41—H41B0.9800
C4—H40.9500C41—H41C0.9800
N31—Ni1—N21176.02 (6)C4—C3—H3121.0
N31—Ni1—O4189.22 (6)N1—C4—C3121.66 (15)
N21—Ni1—O4187.09 (5)N1—C4—H4119.2
N31—Ni1—N1190.45 (5)C3—C4—H4119.2
N21—Ni1—N1190.90 (6)C14—N11—C11117.02 (16)
O41—Ni1—N1187.81 (5)C14—N11—Ni1122.48 (11)
N31—Ni1—N2i87.56 (5)C11—N11—Ni1120.49 (12)
N21—Ni1—N2i90.73 (5)N11—C11—N11iii125.2 (2)
O41—Ni1—N2i86.62 (5)N11—C11—H11117.4
N11—Ni1—N2i174.11 (5)N11iii—C11—H11117.4
N31—Ni1—N192.29 (5)C14—C13—C14iii117.1 (2)
N21—Ni1—N191.44 (5)C14—C13—H13121.4
O41—Ni1—N1177.66 (5)C14iii—C13—H13121.4
N11—Ni1—N190.39 (5)N11—C14—C13121.79 (16)
N2i—Ni1—N195.23 (5)N11—C14—H14119.1
C1—N1—C4116.23 (14)C13—C14—H14119.1
C1—N1—Ni1122.94 (10)C21—N21—Ni1166.20 (14)
C4—N1—Ni1120.79 (11)N21—C21—S21178.86 (16)
C1—N2—C2117.01 (14)C31—N31—Ni1164.08 (13)
C1—N2—Ni1ii122.90 (10)N31—C31—S31179.26 (16)
C2—N2—Ni1ii119.50 (11)C41—O41—Ni1128.45 (12)
N2—C1—N1125.96 (13)C41—O41—H1O4110 (2)
N2—C1—H1117.0Ni1—O41—H1O4121.7 (19)
N1—C1—H1117.0O41—C41—H41A109.5
N2—C2—C3121.22 (15)O41—C41—H41B109.5
N2—C2—H2119.4H41A—C41—H41B109.5
C3—C2—H2119.4O41—C41—H41C109.5
C2—C3—C4117.90 (14)H41A—C41—H41C109.5
C2—C3—H3121.0H41B—C41—H41C109.5
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2; (iii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H1O4···S21iv0.80 (3)2.50 (3)3.2474 (14)154 (2)
Symmetry code: (iv) x+1/4, y+1/4, z+1/4.

Experimental details

Crystal data
Chemical formula[Ni2(NCS)4(C4H4N2)3(CH4O)2]
Mr654.10
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)80
a, b, c (Å)20.0624 (4), 32.5018 (6), 8.0268 (2)
V3)5233.99 (19)
Z8
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.19 × 0.09 × 0.03
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.813, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
26228, 3743, 3659
Rint0.043
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.048, 1.09
No. of reflections3743
No. of parameters170
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.21
Absolute structureFlack (1983), 1746 Friedel pairs
Absolute structure parameter0.0917 (74)

Computer programs: X-AREA (Stoe & Cie, 2008), X-RED32 (Stoe & Cie, 2008, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N312.0334 (14)Ni1—N112.1118 (13)
Ni1—N212.0376 (13)Ni1—N2i2.1200 (13)
Ni1—O412.1053 (12)Ni1—N12.1244 (13)
N31—Ni1—N21176.02 (6)O41—Ni1—N1177.66 (5)
O41—Ni1—N2i86.62 (5)N2i—Ni1—N195.23 (5)
N11—Ni1—N2i174.11 (5)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O41—H1O4···S21ii0.80 (3)2.50 (3)3.2474 (14)154 (2)
Symmetry code: (ii) x+1/4, y+1/4, z+1/4.
 

Acknowledgements

MW thanks the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie and the Studienstiftung des deutschen Volkes for a PhD scholarship. We gratefully acknowledge financial support by the State of Schleswig-Holstein and we thank Professor Dr Wolfgang Bensch for the opportunity to use of his experimental facility.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLloret, F., Munno, G. D., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. Engl. 37, 135–138.  CrossRef CAS Google Scholar
First citationNäther, C., Bhosekar, G. & Jess, I. (2007). Eur. J. Inorg. Chem. pp. 5353–5359.  Google Scholar
First citationNäther, C. & Greve, J. (2003). J. Solid State Chem. 176, 259–265.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008). Eur. J. Inorg. Chem. pp. 363–372.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m361-m362
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds