organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o701-o702

A redetermination of 2-(6-di­ethyl­amino-3-di­ethyl­iminio-3H-xanthen-9-yl)benzoate–ethyl gallate (1/1) at room temperature

aDepartment of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan
*Correspondence e-mail: mizu-j@ynu.ac.jp

(Received 26 February 2009; accepted 2 March 2009; online 6 March 2009)

The title compound, C28H30N2O3·C9H10O5, is a well known red leuco complex of 2-(6-diethyl­amino-3-diethyl­iminio-3H-xanthene-9-yl)benzoate (rhodamine B base abbreviated to RBB: leuco dye) with ethyl gallate (EG: developer). The structure of the complex at room temperature has recently been reported by Sekiguchi, Takayama, Gotanda & Sano [(2007) Chem. Lett. 36, 1010–1011]. The RBB–EG complex forms a dimer (RBB⋯EG⋯EG⋯RBB) through inter­molecular O—H⋯O hydrogen bonds. In a subsequent re-examination of the structure at room temperature, we found the RBB mol­ecule to be disordered with a methyl group of one ethyl substituent of a diethyl­amino group at one extremity of the xanthene unit disordered over two positions [occupancies: 0.735 (5)/0.265 (5)]. Furthermore, at the other end of the xanthene residue, the entire diethyl­amino substituent (i.e. the N atom and the associated C and H atoms) was also disordered over two sites with occupancies 0.653 (7)/0.347 (7). This leads to four kinds of RBB conformations, which, in turn, results in the formation of 16 discrete RBB⋯EG⋯EG⋯RBB dimers in the crystal.

Related literature

For the previous determination of the structure of the 1:1 RBB/EG complex at room temperature, see: Sekiguchi et al. (2007[Sekiguchi, Y., Takayama, S., Gotanda, T. & Sano, K. (2007). Chem. Lett. 36, 1010-1011.]) and for the structure of a second triclinic form of the same complex at 93 K, see: Mizuguchi (2008[Mizuguchi, J. (2008). Acta Cryst. E64, o1238-o1239.]). For the related structure of n-propyl gallate, see: Iwata et al. (2005[Iwata, S., Hitachi, A., Makino, T. & Mizuguchi, J. (2005). Acta Cryst. E61, o2587-o2589.]); Hitachi et al. (2005[Hitachi, A., Makino, T., Iwata, S. & Mizuguchi, J. (2005). Acta Cryst. E61, o2590-o2592.]).

[Scheme 1]

Experimental

Crystal data
  • C28H30N2O3·C9H10O5

  • Mr = 640.71

  • Triclinic, [P \overline 1]

  • a = 11.4721 (3) Å

  • b = 11.8036 (3) Å

  • c = 12.4816 (3) Å

  • α = 85.805 (2)°

  • β = 87.202 (1)°

  • γ = 81.973 (1)°

  • V = 1667.84 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.851, Tmax = 0.863

  • 15046 measured reflections

  • 5610 independent reflections

  • 3355 reflections with F2 > 2σ(F2)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 0.93

  • 5610 reflections

  • 476 parameters

  • 31 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O7i 0.82 2.00 2.811 (2) 168
O5—H5O⋯O2 0.82 2.79 3.257 (2) 118
O5—H5O⋯O3 0.82 1.78 2.579 (2) 164
O6—H6O⋯O2 0.82 1.86 2.5991 (18) 148
O6—H6O⋯O3 0.82 2.78 3.3842 (19) 132
O6—H6O⋯O5 0.82 2.47 2.8758 (19) 112
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2006[Rigaku/MSC & Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound, C28H30N2O3.C9H10O5, is a well known red leuco complex of 2-(6-diethylamino-3-diethyliminio-3H-xanthene-9-yl)benzoate with ethyl gallate (rhodamine B base abbreviated to RBB: leuco dye) with ethyl gallate (EG: developer). The structure of the RBB/EG complex at room temperature has recently been reported by Sekiguchi et al. (2007), where the RBB conformation is uniquely RBB-A as shown schematically in Fig. 1a. That is, the ethyl groups of the xanthene diethylamino substituents lie on the same side of the xanthene plane in RBB-A. Quite recently, we have also found a new triclinic phase with two discrete base/developer complexes (RBB-A/EG-A and RBB-B/EG-B: see Fig. 1a) at 93 K (Mizuguchi, 2008). In both phases, two RBBs are connected by a sub-dimer of EG through intermolecular O—H···O hydrogen bonds. However, close inspection of the supplementary CIF of the report of Sekiguchi et al. (2007) revealed that there was a residual electron density peak of about 1.35 e Å-3. For this reason, a redetermination of the structure has been carried out at room temperature in the present investigation. This revealed that the RBB molecule is disordered as shown in Fig. 1b with the C28 methyl group of one ethyl substituent of the N1 diethylamino group at one extremity of the xanthene moiety as well as the entire diethylamino-substituent (i.e. N2 atom with the associated C and H atoms) at the other end of the xanthene unit disordered over two positions.

As shown in Fig. 1b, the RBB molecule is disordered at C28A/C28B together with their associated H atoms at one extremity of the xanthene moiety. The disordered structure is separated into the major (0.735 (5)) and minor (0.265 (5)) components which correspond to the RBB-A and RBB-B forms respectively, as shown in Fig. 1a. These are similar to those found at 93K, where the diethylamino-substituents lie either on the same side, or on opposite sides of the xanthene plane. Similarly, the disorder at the entire N2 diethylamino-substituents at the other end of the xanthene plane also leads to the presence of the two conformations described above: N2A group (diethylamino-substituents on the same side; occupancy 0.653 (7)) and N2B group (on opposite sides; occupancy 0.347 (7)). Figs. 2–5 show plots of the four possible structures of (I). Of these, the previous report (Sekiguchi et al., 2007) only identified the conformation shown in Fig. 2.

The lactone ring is opened to form a zwitterionic structure and the benzene ring with the carboxylate is twisted to be nearly perpendicular to the xanthene plane with a dihedral angle of 98.9 (1)° between the O1/C1—C13 plane of the xanthene and the C14—C19 plane of the benzene ring. The xanthene moiety is nearly flat (mean deviation from the least-squares plane, 0.0300 Å).

There are intra and intermolecular O—H···O hydrogen bonds leading to the formation of the RBB/EG complexes as shown in Fig. 6. For example, two major RBB/EG complexes are further connected by intermolecular O—H···O hydrogen bonds between two EGs to form a dimer as shown in Fig. 7. The existence of the four possible RBB conformations leads to the formation of 16 kinds of RBB···EG···EG···RBB dimers in the crystal. The formation of the EG dimer is similar to that found in n-propyl gallate (Iwata et al., 2005; Hitachi et al., 2005).

Related literature top

For the previous determination of the structure of the 1:1 RBB/EG complex at room temperature, see: Sekiguchi et al. (2007) and for the structure of a second triclinic form of the same complex at 93 K, see: Mizuguchi (2008). For the related structure of n-propyl gallate, see: Iwata et al. (2005); Hitachi et al. (2005).

Experimental top

Rhodamine B base and 4-hydroxybenzophenone were purchased from Sigma-Aldrich Corp. and Wako Pure Chemical Industries, Ltd., respectively. Single crystals of (I) were grown by recrystallization from a toluene solution which includes an equimolar quantity of both chemicals. After 24 h, a number of red crystals were obtained in the form of blocks.

Refinement top

The C28A and C28B methyl groups were disordered over two positions with occupancies of 0.735 (5)/0.265 (5), respectively. Also the disorder at N2 (i.e. N2A/N2B) extends to C23–C22–N2–C23–C24 and the associated H atoms. The occupancies for the N2A and N2B groups and their associated atoms are 0.653 (7) and 0.347 (7), respectively. All H atoms were placed in geometrically idealized position and constrained to ride on their parent atoms, with C—H = 0.93, 0.96, and 0.97 Å, and Uiso(H) = 1.2 and 1.5 Ueq(C), respectively, and with O—H = 0.82 Å and Uiso(H) = 1.2.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku/MSC & Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. (a) A schematic representation of the two independent conformations of RBB found at 93 K, where RBB-A illustrates the diethylamino substituents on the same side while in RBB-B they are on opposite sides, of the xanthene plane. (b) The disordered structure of the title molecule at room temperature, where the major and minor disorder components are depicted as solid and dotted lines, respectively.
[Figure 2] Fig. 2. Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity. The "major/major" combination shown here corresponds to the RBB-A form found at 93K and shown in Fig. 1a.
[Figure 3] Fig. 3. Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity.
[Figure 4] Fig. 4. Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity.
[Figure 5] Fig. 5. Plot of one of the four possible disordered conformations of (I), showing 10% displacement ellipsoids. Hydrogen atoms except for those involved in the intermolecular hydrogen bonds are omitted for clarity. The "minor/minor" combination shown here corresponds to the RBB-B form found at 93K and shown in Fig. 1a.
[Figure 6] Fig. 6. Intra- and intermolecular O—H···O hydrogen bonds leading to the formation of the RBB/EG complex. For clarity, only the C14/C19 benzene ring and its substituents are shown for the RBB unit.
[Figure 7] Fig. 7. The hydrogen-bonded RBB (major)···EG···EG···RBB (major) dimer formed by linking two RBB/EG complexes through intermolecular O—H···O hydrogen bonds.
2-(6-diethylamino-3-diethyliminio-3H-xanthen-9-yl)benzoate–ethyl gallate (1/1) top
Crystal data top
C28H30N2O3·C9H10O5Z = 2
Mr = 640.71F(000) = 680.00
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54187 Å
a = 11.4721 (3) ÅCell parameters from 10532 reflections
b = 11.8036 (3) Åθ = 3.0–68.5°
c = 12.4816 (3) ŵ = 0.74 mm1
α = 85.805 (2)°T = 296 K
β = 87.202 (1)°Block, red
γ = 81.973 (1)°0.20 × 0.20 × 0.20 mm
V = 1667.84 (7) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3355 reflections with F2 > 2σ(F2)
ω scansRint = 0.077
Absorption correction: multi-scan
(Higashi, 1995)
θmax = 68.2°
Tmin = 0.851, Tmax = 0.863h = 1313
15046 measured reflectionsk = 1314
5610 independent reflectionsl = 1415
Refinement top
Refinement on F231 restraints
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0812P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
5610 reflectionsΔρmax = 0.16 e Å3
476 parametersΔρmin = 0.19 e Å3
Crystal data top
C28H30N2O3·C9H10O5γ = 81.973 (1)°
Mr = 640.71V = 1667.84 (7) Å3
Triclinic, P1Z = 2
a = 11.4721 (3) ÅCu Kα radiation
b = 11.8036 (3) ŵ = 0.74 mm1
c = 12.4816 (3) ÅT = 296 K
α = 85.805 (2)°0.20 × 0.20 × 0.20 mm
β = 87.202 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5610 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
3355 reflections with F2 > 2σ(F2)
Tmin = 0.851, Tmax = 0.863Rint = 0.077
15046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05031 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.93Δρmax = 0.16 e Å3
5610 reflectionsΔρmin = 0.19 e Å3
476 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.62196 (11)0.41220 (11)0.45212 (10)0.0516 (3)
O20.57084 (12)0.69798 (13)0.66780 (12)0.0664 (4)
O30.60107 (12)0.76396 (14)0.82411 (12)0.0728 (5)
O40.21545 (15)0.78684 (15)1.01780 (12)0.0889 (6)
H4O0.16500.81831.05870.107*
O50.38741 (12)0.72981 (13)0.87434 (12)0.0768 (5)
H5O0.45090.75310.86090.092*
O60.37281 (12)0.83482 (12)0.65926 (11)0.0693 (5)
H6O0.42050.78060.68080.083*
O70.06957 (15)1.09897 (17)0.82505 (14)0.1034 (7)
O80.01167 (13)1.10673 (14)0.66131 (13)0.0808 (5)
N10.54396 (19)0.14504 (17)0.73818 (16)0.0812 (6)
C10.58390 (19)0.24391 (19)0.70248 (18)0.0604 (6)
C20.63447 (19)0.30991 (18)0.77375 (17)0.0611 (6)
H20.63500.28720.84670.073*
C30.68183 (18)0.40497 (18)0.73815 (16)0.0553 (5)
H30.71490.44560.78720.066*
C40.68265 (16)0.44474 (16)0.62802 (15)0.0462 (5)
C50.62725 (16)0.38095 (16)0.55992 (15)0.0463 (5)
C60.58048 (17)0.28344 (18)0.59322 (17)0.0556 (5)
H60.54660.24350.54420.067*
C70.67239 (16)0.50429 (16)0.40937 (16)0.0468 (5)
C80.66879 (18)0.52327 (18)0.29939 (16)0.0559 (5)
H80.63370.47510.25900.067*
C90.7186 (2)0.6162 (2)0.24908 (18)0.0715 (7)
C100.7693 (2)0.6883 (2)0.31501 (18)0.0724 (7)
H100.79990.75230.28350.087*
C110.77389 (19)0.66561 (19)0.42244 (17)0.0598 (6)
H110.80800.71430.46300.072*
C120.72836 (16)0.57016 (16)0.47512 (15)0.0459 (5)
C130.73447 (15)0.53923 (16)0.58585 (15)0.0442 (5)
C140.81034 (16)0.59702 (16)0.65346 (15)0.0470 (5)
C150.93057 (18)0.5612 (2)0.64624 (18)0.0638 (6)
H150.95980.50380.60090.077*
C161.0074 (2)0.6089 (2)0.7050 (2)0.0762 (7)
H161.08770.58300.70000.091*
C170.9652 (2)0.6951 (2)0.7711 (2)0.0738 (7)
H171.01700.73010.80850.089*
C180.84517 (19)0.72899 (19)0.78127 (18)0.0610 (6)
H180.81650.78540.82780.073*
C190.76644 (16)0.68071 (16)0.72356 (15)0.0456 (5)
C200.63599 (17)0.71751 (16)0.73885 (17)0.0507 (5)
N2A0.7055 (4)0.6508 (4)0.1419 (3)0.0667 (12)0.653 (7)
C21A0.6481 (6)0.5815 (5)0.0733 (4)0.0907 (19)0.653 (7)
H21A0.61200.63000.01440.109*0.653 (7)
H21B0.58650.54740.11470.109*0.653 (7)
C22A0.7368 (7)0.4881 (7)0.0290 (6)0.121 (3)0.653 (7)
H22A0.69850.44460.01730.181*0.653 (7)
H22B0.77010.43830.08720.181*0.653 (7)
H22C0.79820.52180.01120.181*0.653 (7)
C23A0.7631 (5)0.7444 (5)0.0886 (5)0.0845 (18)0.653 (7)
H23A0.74510.81130.13020.101*0.653 (7)
H23B0.73060.76410.01830.101*0.653 (7)
C24A0.8941 (6)0.7159 (9)0.0753 (6)0.119 (3)0.653 (7)
H24A0.92630.78060.04050.179*0.653 (7)
H24B0.91280.65120.03220.179*0.653 (7)
H24C0.92730.69760.14460.179*0.653 (7)
N2B0.7578 (9)0.6057 (7)0.1399 (5)0.067 (2)0.347 (7)
C21B0.7208 (8)0.5243 (11)0.0689 (8)0.070 (3)0.347 (7)
H21C0.73410.44890.10630.084*0.347 (7)
H21D0.77420.52250.00620.084*0.347 (7)
C22B0.5970 (7)0.5395 (8)0.0285 (7)0.083 (3)0.347 (7)
H22D0.58890.47830.01600.124*0.347 (7)
H22E0.58210.61160.01270.124*0.347 (7)
H22F0.54150.53830.08850.124*0.347 (7)
C23B0.8235 (11)0.6926 (10)0.0826 (10)0.097 (4)0.347 (7)
H23C0.80780.76360.11860.116*0.347 (7)
H23D0.79680.70780.00970.116*0.347 (7)
C24B0.9536 (10)0.6518 (13)0.0797 (12)0.119 (3)0.347 (7)
H24D0.99470.71010.04390.179*0.347 (7)
H24E0.96950.58320.04160.179*0.347 (7)
H24F0.97980.63600.15180.179*0.347 (7)
C250.5100 (3)0.0666 (2)0.6627 (3)0.0976 (9)
H25A0.46010.11050.60960.117*
H25B0.46420.01280.70180.117*
C260.6126 (3)0.0012 (2)0.6064 (2)0.1088 (10)
H26A0.58630.05880.56970.163*
H26B0.66930.03180.65790.163*
H26C0.64820.05190.55520.163*
C270.5405 (3)0.1044 (3)0.8530 (2)0.1106 (11)
H27A0.53210.17080.89560.133*0.735 (5)
H27B0.47040.06740.86740.133*0.735 (5)
H27C0.56880.02290.85920.133*0.265 (5)
H27D0.59390.14290.89070.133*0.265 (5)
C28A0.6391 (4)0.0270 (3)0.8895 (4)0.1142 (17)0.735 (5)
H28A0.62980.01020.96560.171*0.735 (5)
H28B0.70980.06120.87410.171*0.735 (5)
H28C0.64430.04270.85330.171*0.735 (5)
C28B0.4273 (9)0.1232 (10)0.9041 (10)0.122 (4)0.265 (5)
H28D0.42880.08340.97400.183*0.265 (5)
H28E0.37130.09510.86160.183*0.265 (5)
H28F0.40500.20380.91130.183*0.265 (5)
C290.11073 (17)0.97922 (17)0.78864 (17)0.0535 (5)
C300.11491 (18)0.92607 (19)0.89144 (17)0.0615 (6)
H300.05500.94600.94230.074*
C310.20825 (19)0.84344 (19)0.91795 (17)0.0594 (6)
C320.29921 (17)0.81247 (17)0.84399 (17)0.0535 (5)
C330.29226 (16)0.86332 (17)0.73917 (16)0.0507 (5)
C340.19940 (16)0.94763 (17)0.71342 (16)0.0533 (5)
H340.19670.98340.64450.064*
C350.00929 (19)1.0669 (2)0.76249 (19)0.0658 (6)
C360.0881 (2)1.1878 (3)0.6247 (2)0.1044 (10)
H36A0.16121.16230.65240.125*
H36B0.08401.26260.65060.125*
C370.0845 (3)1.1951 (3)0.5094 (3)0.1308 (13)
H37A0.14951.24890.48390.196*
H37B0.08981.12100.48440.196*
H37C0.01191.22020.48260.196*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0572 (8)0.0526 (8)0.0461 (8)0.0103 (6)0.0067 (6)0.0016 (6)
O20.0483 (8)0.0812 (11)0.0693 (10)0.0075 (7)0.0122 (7)0.0277 (8)
O30.0586 (9)0.0995 (12)0.0594 (10)0.0023 (8)0.0045 (7)0.0285 (9)
O40.0873 (11)0.1121 (14)0.0514 (10)0.0240 (10)0.0129 (8)0.0185 (9)
O50.0579 (9)0.0789 (11)0.0819 (12)0.0115 (8)0.0084 (8)0.0248 (9)
O60.0639 (9)0.0755 (10)0.0580 (9)0.0156 (8)0.0159 (7)0.0057 (8)
O70.0816 (12)0.1408 (17)0.0679 (12)0.0465 (11)0.0147 (10)0.0040 (11)
O80.0677 (10)0.0974 (12)0.0635 (10)0.0285 (9)0.0027 (8)0.0085 (9)
N10.1076 (16)0.0714 (13)0.0693 (14)0.0378 (12)0.0053 (12)0.0142 (11)
C10.0624 (13)0.0581 (14)0.0593 (14)0.0089 (11)0.0006 (11)0.0053 (11)
C20.0745 (14)0.0618 (14)0.0446 (13)0.0062 (11)0.0027 (11)0.0065 (11)
C30.0637 (13)0.0564 (13)0.0442 (12)0.0016 (10)0.0041 (10)0.0028 (10)
C40.0453 (10)0.0487 (11)0.0422 (11)0.0017 (9)0.0034 (9)0.0007 (9)
C50.0455 (10)0.0500 (12)0.0407 (11)0.0009 (9)0.0009 (8)0.0000 (9)
C60.0595 (12)0.0565 (13)0.0514 (13)0.0103 (10)0.0053 (10)0.0006 (10)
C70.0456 (11)0.0470 (11)0.0462 (12)0.0011 (9)0.0038 (9)0.0017 (9)
C80.0634 (13)0.0644 (14)0.0414 (12)0.0134 (11)0.0086 (10)0.0015 (10)
C90.0893 (17)0.0864 (17)0.0431 (13)0.0308 (14)0.0096 (12)0.0078 (12)
C100.0964 (18)0.0740 (16)0.0514 (14)0.0331 (14)0.0072 (13)0.0085 (12)
C110.0689 (14)0.0618 (14)0.0512 (13)0.0166 (11)0.0084 (11)0.0010 (11)
C120.0472 (10)0.0467 (11)0.0435 (11)0.0035 (9)0.0044 (9)0.0046 (9)
C130.0432 (10)0.0481 (11)0.0386 (10)0.0042 (8)0.0018 (8)0.0055 (9)
C140.0451 (11)0.0527 (12)0.0423 (11)0.0038 (9)0.0050 (9)0.0002 (9)
C150.0498 (12)0.0821 (16)0.0573 (14)0.0034 (11)0.0027 (10)0.0132 (12)
C160.0457 (12)0.111 (2)0.0716 (17)0.0057 (13)0.0079 (12)0.0113 (16)
C170.0582 (14)0.103 (2)0.0649 (15)0.0214 (13)0.0135 (12)0.0110 (15)
C180.0638 (14)0.0689 (14)0.0523 (13)0.0112 (11)0.0035 (11)0.0126 (11)
C190.0480 (11)0.0495 (11)0.0393 (10)0.0065 (9)0.0025 (9)0.0030 (9)
C200.0513 (12)0.0477 (12)0.0514 (12)0.0010 (9)0.0001 (10)0.0042 (10)
N2A0.087 (3)0.074 (3)0.0399 (19)0.015 (2)0.0150 (19)0.0078 (18)
C21A0.116 (5)0.106 (4)0.050 (3)0.020 (4)0.006 (3)0.008 (3)
C22A0.168 (6)0.107 (6)0.094 (6)0.040 (4)0.016 (5)0.021 (4)
C23A0.114 (4)0.085 (4)0.056 (3)0.028 (3)0.007 (3)0.016 (3)
C24A0.120 (7)0.146 (9)0.101 (3)0.052 (5)0.003 (5)0.004 (5)
N2B0.090 (6)0.066 (5)0.046 (4)0.022 (4)0.014 (4)0.015 (4)
C21B0.085 (7)0.087 (10)0.043 (6)0.032 (6)0.006 (5)0.014 (5)
C22B0.101 (6)0.084 (6)0.066 (5)0.021 (5)0.039 (5)0.008 (4)
C23B0.158 (16)0.084 (8)0.053 (5)0.037 (9)0.018 (9)0.012 (6)
C24B0.120 (7)0.146 (9)0.101 (3)0.052 (5)0.003 (5)0.004 (5)
C250.124 (2)0.0791 (19)0.098 (2)0.0515 (19)0.0053 (19)0.0119 (17)
C260.159 (3)0.077 (2)0.092 (2)0.027 (2)0.011 (2)0.0052 (17)
C270.143 (3)0.094 (2)0.099 (2)0.049 (2)0.018 (2)0.0329 (18)
C28A0.146 (4)0.089 (3)0.110 (3)0.024 (3)0.024 (3)0.005 (2)
C28B0.161 (8)0.109 (7)0.098 (7)0.044 (7)0.026 (6)0.013 (6)
C290.0500 (11)0.0600 (13)0.0489 (12)0.0002 (10)0.0000 (9)0.0086 (10)
C300.0558 (12)0.0769 (15)0.0477 (12)0.0038 (11)0.0059 (10)0.0054 (11)
C310.0634 (13)0.0677 (14)0.0435 (12)0.0005 (11)0.0020 (10)0.0022 (11)
C320.0482 (11)0.0532 (12)0.0563 (13)0.0010 (9)0.0014 (10)0.0023 (10)
C330.0462 (11)0.0538 (12)0.0503 (12)0.0046 (9)0.0071 (9)0.0020 (10)
C340.0518 (11)0.0583 (13)0.0468 (12)0.0007 (10)0.0009 (9)0.0010 (10)
C350.0577 (13)0.0800 (16)0.0551 (14)0.0073 (12)0.0006 (11)0.0075 (12)
C360.0872 (19)0.120 (2)0.088 (2)0.0448 (17)0.0106 (16)0.0104 (18)
C370.108 (2)0.176 (3)0.091 (2)0.039 (2)0.019 (2)0.011 (2)
Geometric parameters (Å, º) top
O1—C71.364 (2)C22A—H22B0.9600
O1—C51.371 (2)C22A—H22C0.9600
O2—C201.241 (2)C23A—C24A1.498 (6)
O3—C201.255 (2)C23A—H23A0.9700
O4—C311.371 (2)C23A—H23B0.9700
O4—H4O0.8200C24A—H24A0.9600
O5—C321.352 (2)C24A—H24B0.9600
O5—H5O0.8200C24A—H24C0.9600
O6—C331.354 (2)N2B—C21B1.471 (7)
O6—H6O0.8200N2B—C23B1.478 (7)
O7—C351.204 (2)C21B—C22B1.513 (8)
O8—C351.315 (3)C21B—H21C0.9700
O8—C361.455 (3)C21B—H21D0.9700
N1—C11.350 (3)C22B—H22D0.9600
N1—C251.470 (3)C22B—H22E0.9600
N1—C271.479 (3)C22B—H22F0.9600
C1—C61.409 (3)C23B—C24B1.503 (9)
C1—C21.419 (3)C23B—H23C0.9700
C2—C31.351 (3)C23B—H23D0.9700
C2—H20.9300C24B—H24D0.9600
C3—C41.420 (3)C24B—H24E0.9600
C3—H30.9300C24B—H24F0.9600
C4—C131.394 (3)C25—C261.490 (4)
C4—C51.405 (3)C25—H25A0.9700
C5—C61.366 (3)C25—H25B0.9700
C6—H60.9300C26—H26A0.9600
C7—C81.376 (3)C26—H26B0.9600
C7—C121.405 (3)C26—H26C0.9600
C8—C91.401 (3)C27—C28B1.415 (8)
C8—H80.9300C27—C28A1.422 (4)
C9—N2A1.379 (4)C27—H27A0.9700
C9—N2B1.423 (6)C27—H27B0.9700
C9—C101.424 (3)C27—H27C0.9700
C10—C111.350 (3)C27—H27D0.9700
C10—H100.9300C28A—H28A0.9600
C11—C121.413 (3)C28A—H28B0.9600
C11—H110.9300C28A—H28C0.9600
C12—C131.406 (3)C28B—H28D0.9600
C13—C141.502 (3)C28B—H28E0.9600
C14—C151.386 (3)C28B—H28F0.9600
C14—C191.393 (3)C29—C341.381 (3)
C15—C161.376 (3)C29—C301.386 (3)
C15—H150.9300C29—C351.477 (3)
C16—C171.377 (3)C30—C311.380 (3)
C16—H160.9300C30—H300.9300
C17—C181.382 (3)C31—C321.387 (3)
C17—H170.9300C32—C331.400 (3)
C18—C191.388 (3)C33—C341.385 (3)
C18—H180.9300C34—H340.9300
C19—C201.506 (3)C36—C371.435 (4)
N2A—C21A1.465 (5)C36—H36A0.9700
N2A—C23A1.467 (5)C36—H36B0.9700
C21A—C22A1.509 (6)C37—H37A0.9600
C21A—H21A0.9700C37—H37B0.9600
C21A—H21B0.9700C37—H37C0.9600
C22A—H22A0.9600
O2···O62.5991 (18)N2A···C28Bii2.914 (11)
O3···O52.579 (2)C22B···C22Biii2.676 (12)
O4···O7i2.811 (2)C23A···C28Bii2.504 (11)
O5···O32.579 (2)C28B···N2Aii2.914 (11)
O6···O22.5991 (18)C28B···C23Aii2.504 (11)
O7···O4i2.811 (2)
C7—O1—C5120.40 (16)N2B—C21B—C22B121.2 (12)
C31—O4—H4O109.5N2B—C21B—H21C107.0
C32—O5—H5O109.5C22B—C21B—H21C107.0
C33—O6—H6O109.5N2B—C21B—H21D107.0
C35—O8—C36117.74 (19)C22B—C21B—H21D107.0
C1—N1—C25121.1 (2)H21C—C21B—H21D106.8
C1—N1—C27122.9 (2)C21B—C22B—H22D109.5
C25—N1—C27115.9 (2)C21B—C22B—H22E109.5
N1—C1—C6121.6 (2)H22D—C22B—H22E109.5
N1—C1—C2120.8 (2)C21B—C22B—H22F109.5
C6—C1—C2117.6 (2)H22D—C22B—H22F109.5
C3—C2—C1121.5 (2)H22E—C22B—H22F109.5
C3—C2—H2119.2N2B—C23B—C24B110.8 (8)
C1—C2—H2119.2N2B—C23B—H23C109.5
C2—C3—C4121.9 (2)C24B—C23B—H23C109.5
C2—C3—H3119.0N2B—C23B—H23D109.5
C4—C3—H3119.0C24B—C23B—H23D109.5
C13—C4—C5120.04 (17)H23C—C23B—H23D108.1
C13—C4—C3124.57 (19)C23B—C24B—H24D109.5
C5—C4—C3115.39 (18)C23B—C24B—H24E109.5
C6—C5—O1115.64 (18)H24D—C24B—H24E109.5
C6—C5—C4123.93 (18)C23B—C24B—H24F109.5
O1—C5—C4120.37 (17)H24D—C24B—H24F109.5
C5—C6—C1119.5 (2)H24E—C24B—H24F109.5
C5—C6—H6120.3N1—C25—C26113.4 (2)
C1—C6—H6120.3N1—C25—H25A108.9
O1—C7—C8115.50 (18)C26—C25—H25A108.9
O1—C7—C12120.75 (17)N1—C25—H25B108.9
C8—C7—C12123.68 (19)C26—C25—H25B108.9
C7—C8—C9119.1 (2)H25A—C25—H25B107.7
C7—C8—H8120.4C25—C26—H26A109.5
C9—C8—H8120.4C25—C26—H26B109.5
N2A—C9—C8123.0 (3)H26A—C26—H26B109.5
C8—C9—N2B116.2 (3)C25—C26—H26C109.5
N2A—C9—C10118.2 (3)H26A—C26—H26C109.5
C8—C9—C10118.1 (2)H26B—C26—H26C109.5
N2B—C9—C10120.7 (4)C28B—C27—C28A127.0 (6)
C11—C10—C9121.2 (2)C28B—C27—N1114.1 (6)
C11—C10—H10119.4C28A—C27—N1116.6 (3)
C9—C10—H10119.4C28B—C27—H27A68.6
C10—C11—C12122.0 (2)C28A—C27—H27A108.1
C10—C11—H11119.0N1—C27—H27A108.1
C12—C11—H11119.0C28A—C27—H27B108.1
C7—C12—C13119.51 (18)N1—C27—H27B108.1
C7—C12—C11115.67 (18)H27A—C27—H27B107.3
C13—C12—C11124.82 (19)C28B—C27—H27C108.7
C4—C13—C12118.90 (18)N1—C27—H27C108.7
C4—C13—C14120.76 (16)H27A—C27—H27C140.0
C12—C13—C14119.77 (17)H27B—C27—H27C74.9
C15—C14—C19119.29 (19)C28B—C27—H27D108.7
C15—C14—C13116.78 (18)C28A—C27—H27D68.4
C19—C14—C13123.91 (16)N1—C27—H27D108.7
C16—C15—C14121.2 (2)H27B—C27—H27D139.7
C16—C15—H15119.4H27C—C27—H27D107.6
C14—C15—H15119.4C27—C28A—H28A109.5
C15—C16—C17119.9 (2)C27—C28A—H28B109.5
C15—C16—H16120.1H28A—C28A—H28B109.5
C17—C16—H16120.1C27—C28A—H28C109.5
C16—C17—C18119.3 (2)H28A—C28A—H28C109.5
C16—C17—H17120.3H28B—C28A—H28C109.5
C18—C17—H17120.3C27—C28B—H28D109.5
C17—C18—C19121.4 (2)C27—C28B—H28E109.5
C17—C18—H18119.3H28D—C28B—H28E109.5
C19—C18—H18119.3C27—C28B—H28F109.5
C18—C19—C14118.84 (18)H28D—C28B—H28F109.5
C18—C19—C20119.97 (18)H28E—C28B—H28F109.5
C14—C19—C20121.18 (18)C34—C29—C30119.53 (19)
O2—C20—O3124.83 (19)C34—C29—C35122.0 (2)
O2—C20—C19118.03 (18)C30—C29—C35118.48 (19)
O3—C20—C19117.13 (19)C31—C30—C29119.74 (19)
C9—N2A—C21A119.5 (4)C31—C30—H30120.1
C9—N2A—C23A122.6 (4)C29—C30—H30120.1
C21A—N2A—C23A117.2 (4)O4—C31—C30122.02 (19)
N2A—C21A—C22A110.3 (7)O4—C31—C32116.56 (19)
N2A—C21A—H21A109.6C30—C31—C32121.4 (2)
C22A—C21A—H21A109.6O5—C32—C31118.64 (19)
N2A—C21A—H21B109.6O5—C32—C33122.70 (18)
C22A—C21A—H21B109.6C31—C32—C33118.55 (18)
H21A—C21A—H21B108.1O6—C33—C34116.86 (18)
C21A—C22A—H22A109.5O6—C33—C32123.40 (18)
C21A—C22A—H22B109.5C34—C33—C32119.75 (18)
H22A—C22A—H22B109.5C29—C34—C33120.9 (2)
C21A—C22A—H22C109.5C29—C34—H34119.5
H22A—C22A—H22C109.5C33—C34—H34119.5
H22B—C22A—H22C109.5O7—C35—O8122.1 (2)
N2A—C23A—C24A113.7 (5)O7—C35—C29124.9 (2)
N2A—C23A—H23A108.8O8—C35—C29112.99 (19)
C24A—C23A—H23A108.8C37—C36—O8108.5 (2)
N2A—C23A—H23B108.8C37—C36—H36A110.0
C24A—C23A—H23B108.8O8—C36—H36A110.0
H23A—C23A—H23B107.7C37—C36—H36B110.0
C23A—C24A—H24A109.5O8—C36—H36B110.0
C23A—C24A—H24B109.5H36A—C36—H36B108.4
H24A—C24A—H24B109.5C36—C37—H37A109.5
C23A—C24A—H24C109.5C36—C37—H37B109.5
H24A—C24A—H24C109.5H37A—C37—H37B109.5
H24B—C24A—H24C109.5C36—C37—H37C109.5
C9—N2B—C21B124.8 (7)H37A—C37—H37C109.5
C9—N2B—C23B120.8 (7)H37B—C37—H37C109.5
C21B—N2B—C23B113.6 (8)
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O7i0.822.002.811 (2)168
O5—H5O···O20.822.793.257 (2)118
O5—H5O···O30.821.782.579 (2)164
O6—H6O···O20.821.862.5991 (18)148
O6—H6O···O30.822.783.3842 (19)132
O6—H6O···O50.822.472.8758 (19)112
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC28H30N2O3·C9H10O5
Mr640.71
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.4721 (3), 11.8036 (3), 12.4816 (3)
α, β, γ (°)85.805 (2), 87.202 (1), 81.973 (1)
V3)1667.84 (7)
Z2
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.851, 0.863
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
15046, 5610, 3355
Rint0.077
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 0.93
No. of reflections5610
No. of parameters476
No. of restraints31
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC & Rigaku, 2006), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), CrystalStructure (Rigaku/MSC & Rigaku, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O7i0.8202.0002.811 (2)168.4
O5—H5O···O20.8202.7893.257 (2)118.1
O5—H5O···O30.8201.7802.579 (2)164.3
O6—H6O···O20.8201.8602.5991 (18)148.4
O6—H6O···O30.8202.7803.3842 (19)132.1
O6—H6O···O50.8202.47002.8758 (19)111.7
Symmetry code: (i) x, y+2, z+2.
 

Acknowledgements

The authors express their sincere thanks to Mr H. Shima for experimental assistance.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHitachi, A., Makino, T., Iwata, S. & Mizuguchi, J. (2005). Acta Cryst. E61, o2590–o2592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIwata, S., Hitachi, A., Makino, T. & Mizuguchi, J. (2005). Acta Cryst. E61, o2587–o2589.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuguchi, J. (2008). Acta Cryst. E64, o1238–o1239.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC & Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSekiguchi, Y., Takayama, S., Gotanda, T. & Sano, K. (2007). Chem. Lett. 36, 1010–1011.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o701-o702
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds