organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-N′-(3,5-di­bromo-2-hy­droxy­benzyl­­idene)benzohydrazide methanol solvate

aDepartment of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China
*Correspondence e-mail: huainanweiyijun@163.com

(Received 28 February 2009; accepted 28 February 2009; online 6 March 2009)

The title compound, C14H9Br3N2O2·CH4O, was prepared by the reaction of 3,5-dibromo-2-hydroxy­benzaldehyde and 3-bromo­benzohydrazide in methanol. The asymmetric unit of the crystal consists of a Schiff base mol­ecule and a methanol mol­ecule of crystallization. The dihedral angle between the two benzene rings is 5.5 (2)°. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal structure, pairs of adjacent Schiff base mol­ecules are linked by two methanol mol­ecules through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff bases, see: Annigeri et al. (2002[Annigeri, S. M., Naik, A. D., Gangadharmath, U. B., Revankar, V. K. & Mahale, V. B. (2002). Transition Met. Chem. 27, 316-320.]); Lodeiro et al. (2003[Lodeiro, C., Bastida, R., Bértolo, E., Macías, A. & Rodríguez, A. (2003). Transition Met. Chem. 28, 388-394.]); Rao et al. (2003[Rao, P. V., Rao, C. P., Wegelius, E. K. & Rissanen, K. (2003). J. Chem. Crystallogr. 33, 139-147.]). For related structures, see: Bao & Wei (2008[Bao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682.]); Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916-o1918.]); Wang et al. (2006[Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1179-1182.]); Wei et al. (2008[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008). Transition Met. Chem. 33, 543-546.]); Yathirajan et al. (2007[Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936-o938.]); Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Br3N2O2·CH4O

  • Mr = 509.00

  • Triclinic, [P \overline 1]

  • a = 8.900 (1) Å

  • b = 9.366 (1) Å

  • c = 11.392 (2) Å

  • α = 95.043 (2)°

  • β = 111.048 (2)°

  • γ = 99.584 (2)°

  • V = 862.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.03 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.216, Tmax = 0.245

  • 5016 measured reflections

  • 3606 independent reflections

  • 2582 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.03

  • 3606 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.559 (3) 145
O3—H3⋯O2i 0.82 1.97 2.767 (4) 164
N2—H2⋯O3ii 0.90 (3) 1.986 (18) 2.848 (4) 160 (4)
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are readily synthesized by the reaction of aldehydes with primary amines (Lodeiro et al., 2003; Annigeri et al., 2002; Rao et al., 2003). We have previously reported some Schiff bases and their complexes (Wei et al., 2008; Wang et al., 2006). In this paper, the preparation and crystal structure of the new Schiff base title compound (I), Fig 1, is reported.

The CN bond length in the title molecule is comparable with those observed in other Schiff bases (Yehye et al., 2008; Odabaşoğlu et al., 2007; Yathirajan et al., 2007). All bond lengths are within normal ranges and are comparable to those observed in the related compounds (Zhu et al., 2009; Bao & Wei, 2008). The dihedral angle between C1—C6 and C9—C14 phenyl rings is 5.5 (2)°, indicating that the molecule is nearly coplanar. An intramolecular O1—H1···N1 hydrogen bond is observed and may contribute to the overall planarity of the molecule.

In the crystal structure, pairs of adjacent Schiff base molecules are linked by two methanol molecules through intermolecular N2—H2···O3 and O3—H3···O2 hydrogen bonds, Table 1, Fig. 2.

Related literature top

For the synthesis of Schiff bases, see: Annigeri et al. (2002); Lodeiro et al. (2003); Rao et al. (2003). For related structures, see: Bao & Wei (2008); Odabaşoğlu et al. (2007); Wang et al. (2006); Wei et al. (2008); Yathirajan et al. (2007); Yehye et al. (2008); Zhu et al. (2009).

Experimental top

3,5-Dibromo-2-hydroxybenzaldehyde (1.0 mmol) and 3-bromobenzohydrazide (1.0 mmol) were dissolved in methanol (30 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. After keeping this solution in air for a week, colourless block-shaped crystals were formed.

Refinement top

The H atom bound to N2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically (C—H = 0.93-0.96 Å and O—H = 0.82 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C) and 1.5Ueq(O and C15). The crystals were small and weakly diffracting which accounts for the low measured data fraction of 96% out to θ = 27.0 °.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. Molecular packing of the title compound. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C14H9Br3N2O2·CH4OZ = 2
Mr = 509.00F(000) = 492
Triclinic, P1Dx = 1.960 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.900 (1) ÅCell parameters from 1965 reflections
b = 9.366 (1) Åθ = 2.5–28.0°
c = 11.392 (2) ŵ = 7.03 mm1
α = 95.043 (2)°T = 298 K
β = 111.048 (2)°Block, colorless
γ = 99.584 (2)°0.23 × 0.20 × 0.20 mm
V = 862.6 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.216, Tmax = 0.245k = 1111
5016 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.2522P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.61 e Å3
Crystal data top
C14H9Br3N2O2·CH4Oγ = 99.584 (2)°
Mr = 509.00V = 862.6 (2) Å3
Triclinic, P1Z = 2
a = 8.900 (1) ÅMo Kα radiation
b = 9.366 (1) ŵ = 7.03 mm1
c = 11.392 (2) ÅT = 298 K
α = 95.043 (2)°0.23 × 0.20 × 0.20 mm
β = 111.048 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2582 reflections with I > 2σ(I)
Tmin = 0.216, Tmax = 0.245Rint = 0.019
5016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.45 e Å3
3606 reflectionsΔρmin = 0.61 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.70334 (5)1.00574 (5)0.37638 (4)0.07063 (16)
Br21.39490 (6)1.16831 (6)0.18075 (5)0.08319 (19)
Br31.13101 (5)0.31103 (4)0.49994 (3)0.05564 (13)
O10.7708 (3)0.8094 (3)0.1804 (2)0.0524 (6)
H10.78910.75460.12690.079*
O20.6880 (3)0.5145 (3)0.0140 (2)0.0564 (7)
O30.7124 (3)0.4000 (3)0.7628 (2)0.0634 (7)
H30.68860.43880.81920.095*
N10.9495 (3)0.7027 (3)0.0069 (2)0.0402 (6)
N20.9553 (4)0.6172 (3)0.0991 (3)0.0410 (6)
C11.0672 (4)0.8813 (3)0.0850 (3)0.0351 (7)
C20.9137 (4)0.8887 (4)0.1748 (3)0.0378 (7)
C30.9096 (4)0.9860 (4)0.2607 (3)0.0425 (8)
C41.0505 (4)1.0671 (4)0.2633 (3)0.0449 (8)
H41.04501.12880.32360.054*
C51.2002 (4)1.0569 (4)0.1762 (3)0.0460 (8)
C61.2101 (4)0.9668 (4)0.0856 (3)0.0424 (8)
H61.31210.96320.02510.051*
C71.0795 (4)0.7865 (3)0.0117 (3)0.0389 (8)
H71.18070.78770.07550.047*
C80.8112 (4)0.5247 (4)0.0818 (3)0.0388 (7)
C90.8101 (4)0.4374 (3)0.1852 (3)0.0365 (7)
C100.6573 (4)0.3690 (4)0.1800 (3)0.0487 (9)
H100.56200.38090.11600.058*
C110.6468 (5)0.2827 (5)0.2705 (4)0.0607 (11)
H110.54420.23610.26700.073*
C120.7878 (5)0.2654 (4)0.3657 (4)0.0538 (10)
H120.78110.20770.42680.065*
C130.9373 (4)0.3341 (4)0.3692 (3)0.0407 (8)
C140.9518 (4)0.4212 (3)0.2807 (3)0.0375 (7)
H141.05500.46790.28530.045*
C150.5947 (6)0.4070 (6)0.6437 (4)0.0784 (14)
H15A0.57480.50450.64200.118*
H15B0.49390.33890.62910.118*
H15C0.63460.38220.57840.118*
H21.054 (3)0.617 (5)0.159 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0520 (3)0.0897 (3)0.0683 (3)0.0262 (2)0.0085 (2)0.0444 (2)
Br20.0529 (3)0.0928 (4)0.0939 (4)0.0098 (2)0.0193 (2)0.0505 (3)
Br30.0528 (2)0.0679 (3)0.0421 (2)0.01579 (19)0.00793 (17)0.02572 (18)
O10.0349 (13)0.0634 (17)0.0562 (15)0.0067 (11)0.0111 (12)0.0302 (13)
O20.0364 (14)0.0847 (19)0.0458 (14)0.0112 (13)0.0087 (12)0.0325 (13)
O30.0423 (15)0.087 (2)0.0534 (15)0.0155 (14)0.0067 (13)0.0188 (15)
N10.0430 (16)0.0410 (16)0.0396 (14)0.0114 (13)0.0152 (13)0.0199 (12)
N20.0402 (16)0.0463 (16)0.0387 (15)0.0110 (13)0.0132 (13)0.0220 (13)
C10.0383 (18)0.0363 (17)0.0315 (16)0.0076 (14)0.0131 (14)0.0099 (13)
C20.0372 (18)0.0398 (18)0.0363 (17)0.0108 (15)0.0117 (15)0.0102 (14)
C30.042 (2)0.047 (2)0.0378 (18)0.0150 (16)0.0109 (16)0.0151 (15)
C40.052 (2)0.043 (2)0.0396 (18)0.0100 (17)0.0146 (17)0.0175 (15)
C50.044 (2)0.044 (2)0.049 (2)0.0008 (16)0.0177 (17)0.0164 (16)
C60.0371 (18)0.0434 (19)0.0422 (18)0.0056 (15)0.0094 (15)0.0138 (15)
C70.0406 (19)0.0391 (19)0.0357 (17)0.0119 (15)0.0094 (15)0.0144 (14)
C80.0369 (18)0.0457 (19)0.0398 (18)0.0155 (15)0.0159 (16)0.0195 (15)
C90.0392 (18)0.0391 (18)0.0346 (16)0.0115 (14)0.0151 (15)0.0124 (14)
C100.0339 (19)0.061 (2)0.054 (2)0.0124 (17)0.0155 (17)0.0246 (18)
C110.042 (2)0.077 (3)0.073 (3)0.0102 (19)0.028 (2)0.039 (2)
C120.052 (2)0.062 (2)0.059 (2)0.0154 (19)0.0278 (19)0.0336 (19)
C130.0411 (19)0.046 (2)0.0342 (16)0.0104 (16)0.0113 (15)0.0130 (15)
C140.0329 (17)0.0427 (19)0.0374 (17)0.0066 (14)0.0135 (14)0.0118 (14)
C150.052 (3)0.115 (4)0.056 (2)0.010 (3)0.005 (2)0.034 (3)
Geometric parameters (Å, º) top
Br1—C31.886 (3)C4—H40.9300
Br2—C51.889 (3)C5—C61.378 (4)
Br3—C131.891 (3)C6—H60.9300
O1—C21.339 (4)C7—H70.9300
O1—H10.8200C8—C91.494 (4)
O2—C81.221 (4)C9—C141.381 (4)
O3—C151.400 (4)C9—C101.381 (5)
O3—H30.8200C10—C111.385 (5)
N1—C71.265 (4)C10—H100.9300
N1—N21.367 (3)C11—C121.378 (5)
N2—C81.361 (4)C11—H110.9300
N2—H20.90 (3)C12—C131.364 (5)
C1—C61.388 (5)C12—H120.9300
C1—C21.399 (4)C13—C141.378 (4)
C1—C71.461 (4)C14—H140.9300
C2—C31.390 (4)C15—H15A0.9600
C3—C41.365 (5)C15—H15B0.9600
C4—C51.370 (5)C15—H15C0.9600
C2—O1—H1109.5O2—C8—N2121.2 (3)
C15—O3—H3109.5O2—C8—C9121.5 (3)
C7—N1—N2120.2 (3)N2—C8—C9117.2 (3)
C8—N2—N1115.8 (3)C14—C9—C10120.4 (3)
C8—N2—H2125 (3)C14—C9—C8123.2 (3)
N1—N2—H2118 (3)C10—C9—C8116.4 (3)
C6—C1—C2120.0 (3)C9—C10—C11119.6 (3)
C6—C1—C7119.1 (3)C9—C10—H10120.2
C2—C1—C7120.8 (3)C11—C10—H10120.2
O1—C2—C3118.5 (3)C12—C11—C10120.3 (3)
O1—C2—C1123.4 (3)C12—C11—H11119.8
C3—C2—C1118.1 (3)C10—C11—H11119.8
C4—C3—C2121.7 (3)C13—C12—C11119.0 (3)
C4—C3—Br1119.5 (2)C13—C12—H12120.5
C2—C3—Br1118.8 (3)C11—C12—H12120.5
C3—C4—C5119.5 (3)C12—C13—C14122.0 (3)
C3—C4—H4120.2C12—C13—Br3119.2 (3)
C5—C4—H4120.2C14—C13—Br3118.8 (2)
C4—C5—C6120.8 (3)C13—C14—C9118.6 (3)
C4—C5—Br2119.4 (3)C13—C14—H14120.7
C6—C5—Br2119.8 (3)C9—C14—H14120.7
C5—C6—C1119.7 (3)O3—C15—H15A109.5
C5—C6—H6120.2O3—C15—H15B109.5
C1—C6—H6120.2H15A—C15—H15B109.5
N1—C7—C1118.6 (3)O3—C15—H15C109.5
N1—C7—H7120.7H15A—C15—H15C109.5
C1—C7—H7120.7H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.559 (3)145
O3—H3···O2i0.821.972.767 (4)164
N2—H2···O3ii0.90 (3)1.99 (2)2.848 (4)160 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H9Br3N2O2·CH4O
Mr509.00
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.900 (1), 9.366 (1), 11.392 (2)
α, β, γ (°)95.043 (2), 111.048 (2), 99.584 (2)
V3)862.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)7.03
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.216, 0.245
No. of measured, independent and
observed [I > 2σ(I)] reflections
5016, 3606, 2582
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.03
No. of reflections3606
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.61

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.559 (3)145.1
O3—H3···O2i0.821.972.767 (4)163.6
N2—H2···O3ii0.90 (3)1.986 (18)2.848 (4)160 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Office of Anhui Province, China, for financial support (grant No. KJ2007A126ZC).

References

First citationAnnigeri, S. M., Naik, A. D., Gangadharmath, U. B., Revankar, V. K. & Mahale, V. B. (2002). Transition Met. Chem. 27, 316–320.  Web of Science CrossRef CAS Google Scholar
First citationBao, X. & Wei, Y.-J. (2008). Acta Cryst. E64, o1682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLodeiro, C., Bastida, R., Bértolo, E., Macías, A. & Rodríguez, A. (2003). Transition Met. Chem. 28, 388–394.  Web of Science CrossRef CAS Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, P. V., Rao, C. P., Wegelius, E. K. & Rissanen, K. (2003). J. Chem. Crystallogr. 33, 139–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1179–1182.  CAS Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008). Transition Met. Chem. 33, 543–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationYathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds