organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14-(2,3-Di­chloro­phen­yl)-9,10-di­methyl­benzimidazo[1,2-a]benzo[f][1,8]naphthyridine-6-carbo­nitrile

aNational Taras Shevchenko University, Department of Chemistry, 64 Volodymyrska Str., Kyiv 01601, Ukraine, and bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: antaran@gala.net

(Received 3 March 2009; accepted 7 March 2009; online 19 March 2009)

In the title compound, C27H16Cl2N4, the benzimidazo[1,2-a]benzo[f][1,8]naphthyridine system is nearly planar (r.m.s. deviation for all non-H atoms = 0.033 Å). The dichloro­phenyl substituent is rotated by −67.5 (2)° from this plane. In the crystal structure, mol­ecules form stacks along the crystallographic (100) direction due to ππ stacking inter­actions with a centroid–centroid distance of 3.4283 (9) Å.

Related literature

For the synthesis of the title compound and a series of similar compounds, see: Volovnenko et al. (2006[Volovnenko, T. A., Tarasov, A. V. & Volovenko, Yu. M. (2006). Ukr. Khim. Zh. (Russ. Ed.), 72, 108-111.]). For 1,2-fused benzimidazo heterocycles and their fluorescence properties, see: Gokhale & Seshadri (1987[Gokhale, U. V. & Seshadri, S. (1987). Dyes Pigm. 8, 157-163.]); Rajagopal & Seshadri (1991[Rajagopal, R. & Seshadri, S. (1991). Dyes Pigm. 17, 57-69.]). For the biological properties of isoquinoline derivatives, see: Shamma (1972[Shamma, M. (1972). The Isoquinoline Alkaloids. New York: Academic Press.]); Kametami & Fukomoto (1981[Kametami, T. & Fukomoto, K. (1981). The Chemistry of Heterocyclic Compounds: Isoquinolines, Part 1, edited by G. Grethe, p. 139. New York: John Wiley.]); Bijan & Basu (1965[Bijan, P. D. & Basu, U. P. (1965). Indian J. Chem. 3, 268-272.]); Neumeyer & Weinhard (1970[Neumeyer, J. L. & Weinhard, K. K. (1970). J. Med. Chem. 13, 613-618.]).

[Scheme 1]

Experimental

Crystal data
  • C27H16Cl2N4

  • Mr = 467.34

  • Triclinic, [P \overline 1]

  • a = 8.5588 (8) Å

  • b = 11.0751 (13) Å

  • c = 12.2332 (11) Å

  • α = 76.985 (9)°

  • β = 75.986 (8)°

  • γ = 85.438 (9)°

  • V = 1095.77 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.6 × 0.1 × 0.1 mm

Data collection
  • Oxford-Diffraction Xcalibur-3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.82, Tmax = 0.97

  • 20237 measured reflections

  • 4290 independent reflections

  • 2405 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.072

  • S = 1.01

  • 4290 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In the past few decades 1,2-fused benzimidazo heterocycles have attracted attention because of their fluorescent properties (Gokhale & Seshadri, 1987; Rajagopal & Seshadri 1991). On the other hand isoquinoline derivatives exhibit a wide range of biological effects and are of great interest to synthetic as well as pharmaceutical organic chemists (Shamma, 1972; Kametami & Fukomoto, 1981; Bijan & Basu, 1965; Neumeyer & Weinhard, 1970).

In a previous paper (Volovnenko et al., 2006) we have described the synthesis of a series of 14-arylbenzimidazo[1,2-a]benzo[f]-1,8-naphthyridine-6-carbonitriles. We report herein the crystal structure of the title compound, which is the derivative of the new heterocyclic system, benzimidazo[1,2-a]benzo[f]-1,8-naphthyridine.

The molecular structure of the title compound is illustrated in Fig. 1. The benzimidazo[1,2-a]benzo[f]-1,8-naphthyridine system is nearly planar (RMS deviation of the non-hydrogen atoms from mean plane is 0.033 Å). Benzene ring is rotated with respect to this plane (the C5—C6—C7—C23 torsion angle is -67.5 (2)°). This rotation results in the loss of conjugation between π systems of the heterocycle and benzene ring. In crystal molecules form stacked chains along the a axis (Fig. 2) due to stacking interactions between the π systems of the pentacyclic fragments. The distance between the parallel planes is 3.4186 (8) Å.

Related literature top

For the synthesis of the title compound and a series of similar compounds, see: Volovnenko et al. (2006). For 1,2-fused benzimidazo heterocycles and their fluorescence properties, see: Gokhale & Seshadri (1987); Rajagopal & Seshadri (1991). For the biological properties of isoquinoline derivatives, see: Shamma (1972); Kametami & Fukomoto (1981); Bijan & Basu (1965); Neumeyer & Weinhard (1970).

Experimental top

The title compound was synthesized by the reaction of 3-chloro-1-(2,3-dichlorophenyl)isoquinoline-4-carbaldehyde (1 mmol) with (5,6-dimethyl-1H-benzimidazol-2-yl)acetonitrile (1 mmol) in dimethylformamide (3–4 ml). After refluxing for 3 h, the reaction mixture was left to stand for overnight. The resulting crude solid was filtered, washed twice with acetone (10 ml) and dried. Yield: 65%. Crystals suitable for X-ray analysis were obtained by slow crystallization from hot dimethylformamide.

Refinement top

H-atoms were placed in calculated positions with d(C—H)=0.93–0.96 Å and refined using riding model with Uiso(H) = nUeq(C) (n = 1.2 for aromatic C—H and n = 1.5 for methyl groups).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound showing stacks along the a axis. Hydrogen atoms are not shown.
14-(2,3-Dichlorophenyl)-9,10-dimethylbenzimidazo[1,2- a]benzo[f][1,8]naphthyridine-6-carbonitrile top
Crystal data top
C27H16Cl2N4Z = 2
Mr = 467.34F(000) = 480
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.5588 (8) ÅCell parameters from 6294 reflections
b = 11.0751 (13) Åθ = 2.7–28.6°
c = 12.2332 (11) ŵ = 0.32 mm1
α = 76.985 (9)°T = 293 K
β = 75.986 (8)°Prism, pale orange
γ = 85.438 (9)°0.6 × 0.1 × 0.1 mm
V = 1095.77 (19) Å3
Data collection top
Oxford-Diffraction Xcalibur-3
diffractometer
4290 independent reflections
Radiation source: Enhance (Mo) X-ray Source2405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1827 pixels mm-1θmax = 26.0°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.82, Tmax = 0.97l = 1515
20237 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
4290 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C27H16Cl2N4γ = 85.438 (9)°
Mr = 467.34V = 1095.77 (19) Å3
Triclinic, P1Z = 2
a = 8.5588 (8) ÅMo Kα radiation
b = 11.0751 (13) ŵ = 0.32 mm1
c = 12.2332 (11) ÅT = 293 K
α = 76.985 (9)°0.6 × 0.1 × 0.1 mm
β = 75.986 (8)°
Data collection top
Oxford-Diffraction Xcalibur-3
diffractometer
4290 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2405 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 0.97Rint = 0.034
20237 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
4290 reflectionsΔρmin = 0.24 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53369 (8)0.08996 (5)0.11087 (4)0.07512 (19)
Cl20.55737 (9)0.26410 (6)0.13175 (4)0.0980 (2)
N10.24410 (16)0.07841 (12)0.33502 (10)0.0416 (4)
N20.15186 (16)0.10485 (12)0.46081 (10)0.0380 (3)
N30.05348 (17)0.29056 (13)0.56580 (11)0.0445 (4)
N40.1445 (2)0.31290 (16)0.85388 (14)0.0799 (6)
C10.4249 (2)0.22794 (16)0.09828 (14)0.0478 (5)
C20.4347 (2)0.30496 (19)0.01113 (14)0.0553 (5)
C30.3485 (2)0.41496 (19)0.02191 (16)0.0599 (6)
H3A0.35500.46600.09440.072*
C40.2526 (2)0.45022 (18)0.07372 (17)0.0637 (6)
H4A0.19330.52440.06530.076*
C50.2435 (2)0.37670 (17)0.18209 (15)0.0575 (5)
H5A0.18020.40230.24650.069*
C60.3291 (2)0.26398 (16)0.19503 (13)0.0439 (4)
C70.3168 (2)0.18469 (15)0.31350 (13)0.0411 (4)
C80.22786 (19)0.00654 (15)0.44182 (13)0.0373 (4)
C90.1249 (2)0.19032 (15)0.56664 (13)0.0388 (4)
C100.0316 (2)0.27288 (15)0.45439 (13)0.0402 (4)
C110.0918 (2)0.15919 (15)0.38690 (13)0.0388 (4)
C120.0814 (2)0.12061 (16)0.27243 (14)0.0469 (5)
H12A0.12210.04500.22830.056*
C130.0089 (2)0.19800 (17)0.22635 (14)0.0506 (5)
C140.0526 (2)0.31292 (16)0.29292 (15)0.0471 (5)
C150.0407 (2)0.34975 (16)0.40614 (14)0.0457 (4)
H15A0.08080.42560.45010.055*
C160.1334 (2)0.39560 (17)0.24225 (15)0.0624 (6)
H16A0.14580.47630.29220.094*
H16B0.06860.40250.16790.094*
H16C0.23740.36070.23430.094*
C170.0053 (3)0.1566 (2)0.10197 (16)0.0844 (7)
H17A0.04360.07750.06910.127*
H17B0.11700.14970.09950.127*
H17C0.04850.21640.05880.127*
C180.1780 (2)0.15844 (16)0.65802 (13)0.0421 (4)
C190.1568 (2)0.24516 (17)0.76740 (15)0.0527 (5)
C200.2535 (2)0.05020 (16)0.64046 (13)0.0431 (4)
H20A0.28820.03120.70090.052*
C210.28103 (19)0.03485 (15)0.53223 (13)0.0375 (4)
C220.36455 (19)0.14875 (15)0.50764 (13)0.0392 (4)
C230.3824 (2)0.22500 (15)0.39544 (13)0.0396 (4)
C240.4691 (2)0.33565 (16)0.36838 (15)0.0491 (5)
H24A0.48110.38660.29540.059*
C250.5350 (2)0.36845 (17)0.44770 (15)0.0534 (5)
H25A0.59270.44090.42840.064*
C260.5162 (2)0.29336 (17)0.55808 (16)0.0530 (5)
H26A0.56120.31660.61200.064*
C270.4328 (2)0.18652 (16)0.58793 (14)0.0462 (5)
H27A0.42080.13810.66200.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1038 (5)0.0659 (4)0.0530 (3)0.0237 (3)0.0178 (3)0.0166 (3)
Cl20.1300 (6)0.1142 (5)0.0412 (3)0.0138 (5)0.0102 (3)0.0149 (3)
N10.0466 (9)0.0348 (8)0.0384 (8)0.0005 (7)0.0089 (7)0.0011 (7)
N20.0416 (9)0.0340 (8)0.0337 (8)0.0004 (7)0.0077 (6)0.0009 (6)
N30.0464 (9)0.0416 (9)0.0402 (9)0.0028 (8)0.0085 (7)0.0013 (7)
N40.1199 (17)0.0661 (12)0.0471 (10)0.0184 (12)0.0227 (10)0.0103 (9)
C10.0549 (13)0.0468 (11)0.0441 (11)0.0044 (10)0.0180 (9)0.0066 (9)
C20.0628 (14)0.0632 (13)0.0401 (11)0.0086 (11)0.0163 (10)0.0043 (10)
C30.0633 (15)0.0666 (15)0.0446 (12)0.0157 (12)0.0172 (11)0.0085 (10)
C40.0627 (15)0.0506 (12)0.0649 (14)0.0010 (11)0.0148 (11)0.0131 (10)
C50.0586 (14)0.0491 (12)0.0512 (12)0.0007 (10)0.0083 (10)0.0114 (10)
C60.0466 (12)0.0427 (11)0.0392 (10)0.0091 (9)0.0111 (9)0.0019 (8)
C70.0421 (11)0.0370 (10)0.0383 (10)0.0007 (9)0.0047 (8)0.0015 (8)
C80.0360 (10)0.0325 (10)0.0373 (10)0.0022 (8)0.0036 (8)0.0011 (8)
C90.0392 (11)0.0362 (10)0.0341 (10)0.0024 (9)0.0040 (8)0.0012 (8)
C100.0399 (11)0.0368 (10)0.0381 (10)0.0028 (9)0.0071 (8)0.0004 (8)
C110.0380 (11)0.0387 (10)0.0375 (10)0.0033 (8)0.0085 (8)0.0054 (8)
C120.0576 (13)0.0360 (10)0.0430 (11)0.0020 (9)0.0112 (9)0.0003 (9)
C130.0597 (13)0.0474 (12)0.0431 (11)0.0017 (10)0.0130 (10)0.0062 (9)
C140.0433 (11)0.0476 (11)0.0505 (11)0.0035 (9)0.0107 (9)0.0125 (9)
C150.0464 (12)0.0358 (10)0.0512 (11)0.0033 (9)0.0095 (9)0.0027 (9)
C160.0685 (15)0.0579 (13)0.0648 (13)0.0059 (11)0.0189 (11)0.0160 (10)
C170.133 (2)0.0714 (15)0.0532 (13)0.0218 (15)0.0388 (14)0.0033 (11)
C180.0460 (12)0.0394 (11)0.0356 (10)0.0031 (9)0.0074 (8)0.0010 (8)
C190.0657 (14)0.0483 (12)0.0418 (11)0.0077 (10)0.0122 (10)0.0025 (10)
C200.0480 (12)0.0437 (11)0.0365 (10)0.0034 (9)0.0109 (8)0.0064 (8)
C210.0366 (11)0.0365 (10)0.0357 (9)0.0051 (8)0.0062 (8)0.0041 (8)
C220.0352 (11)0.0384 (10)0.0408 (10)0.0061 (9)0.0049 (8)0.0083 (8)
C230.0396 (11)0.0338 (10)0.0401 (10)0.0024 (8)0.0035 (8)0.0043 (8)
C240.0539 (13)0.0398 (11)0.0470 (11)0.0029 (10)0.0032 (9)0.0041 (9)
C250.0542 (13)0.0448 (11)0.0598 (13)0.0071 (10)0.0039 (10)0.0161 (10)
C260.0537 (13)0.0525 (12)0.0561 (12)0.0000 (10)0.0118 (10)0.0195 (10)
C270.0501 (12)0.0441 (11)0.0436 (10)0.0043 (10)0.0108 (9)0.0094 (9)
Geometric parameters (Å, º) top
Cl1—C11.7214 (18)C12—H12A0.9300
Cl2—C21.7201 (19)C13—C141.411 (2)
N1—C71.319 (2)C13—C171.519 (2)
N1—C81.3495 (19)C14—C151.379 (2)
N2—C81.3873 (19)C14—C161.505 (2)
N2—C111.4009 (19)C15—H15A0.9300
N2—C91.4013 (19)C16—H16A0.9600
N3—C91.3123 (19)C16—H16B0.9600
N3—C101.3886 (19)C16—H16C0.9600
N4—C191.138 (2)C17—H17A0.9600
C1—C61.387 (2)C17—H17B0.9600
C1—C21.403 (2)C17—H17C0.9600
C2—C31.370 (3)C18—C201.357 (2)
C3—C41.373 (2)C18—C191.441 (2)
C3—H3A0.9300C20—C211.421 (2)
C4—C51.378 (2)C20—H20A0.9300
C4—H4A0.9300C21—C221.436 (2)
C5—C61.393 (2)C22—C271.408 (2)
C5—H5A0.9300C22—C231.420 (2)
C6—C71.500 (2)C23—C241.416 (2)
C7—C231.426 (2)C24—C251.360 (2)
C8—C211.397 (2)C24—H24A0.9300
C9—C181.425 (2)C25—C261.397 (2)
C10—C151.394 (2)C25—H25A0.9300
C10—C111.401 (2)C26—C271.363 (2)
C11—C121.392 (2)C26—H26A0.9300
C12—C131.382 (2)C27—H27A0.9300
C7—N1—C8117.45 (14)C15—C14—C16119.31 (16)
C8—N2—C11131.25 (13)C13—C14—C16120.72 (16)
C8—N2—C9123.19 (13)C14—C15—C10119.72 (16)
C11—N2—C9105.54 (13)C14—C15—H15A120.1
C9—N3—C10104.64 (13)C10—C15—H15A120.1
C6—C1—C2119.87 (16)C14—C16—H16A109.5
C6—C1—Cl1120.71 (13)C14—C16—H16B109.5
C2—C1—Cl1119.42 (14)H16A—C16—H16B109.5
C3—C2—C1119.80 (17)C14—C16—H16C109.5
C3—C2—Cl2119.59 (15)H16A—C16—H16C109.5
C1—C2—Cl2120.60 (15)H16B—C16—H16C109.5
C2—C3—C4120.37 (17)C13—C17—H17A109.5
C2—C3—H3A119.8C13—C17—H17B109.5
C4—C3—H3A119.8H17A—C17—H17B109.5
C3—C4—C5120.64 (18)C13—C17—H17C109.5
C3—C4—H4A119.7H17A—C17—H17C109.5
C5—C4—H4A119.7H17B—C17—H17C109.5
C4—C5—C6119.98 (18)C20—C18—C9120.27 (14)
C4—C5—H5A120.0C20—C18—C19120.64 (15)
C6—C5—H5A120.0C9—C18—C19119.04 (15)
C1—C6—C5119.33 (15)N4—C19—C18178.0 (2)
C1—C6—C7121.37 (15)C18—C20—C21121.74 (15)
C5—C6—C7119.29 (15)C18—C20—H20A119.1
N1—C7—C23123.58 (14)C21—C20—H20A119.1
N1—C7—C6116.15 (14)C8—C21—C20119.06 (15)
C23—C7—C6120.27 (15)C8—C21—C22116.76 (14)
N1—C8—N2115.72 (14)C20—C21—C22124.16 (14)
N1—C8—C21125.72 (15)C27—C22—C23118.74 (16)
N2—C8—C21118.56 (13)C27—C22—C21123.32 (15)
N3—C9—N2113.47 (14)C23—C22—C21117.92 (14)
N3—C9—C18129.35 (14)C24—C23—C22118.74 (15)
N2—C9—C18117.18 (15)C24—C23—C7122.71 (15)
N3—C10—C15129.18 (15)C22—C23—C7118.51 (16)
N3—C10—C11111.38 (15)C25—C24—C23120.91 (16)
C15—C10—C11119.44 (15)C25—C24—H24A119.5
C12—C11—C10121.67 (16)C23—C24—H24A119.5
C12—C11—N2133.34 (16)C24—C25—C26120.03 (17)
C10—C11—N2104.97 (13)C24—C25—H25A120.0
C13—C12—C11117.98 (16)C26—C25—H25A120.0
C13—C12—H12A121.0C27—C26—C25120.95 (17)
C11—C12—H12A121.0C27—C26—H26A119.5
C12—C13—C14121.22 (15)C25—C26—H26A119.5
C12—C13—C17118.67 (17)C26—C27—C22120.63 (16)
C14—C13—C17120.11 (17)C26—C27—H27A119.7
C15—C14—C13119.97 (17)C22—C27—H27A119.7
C6—C1—C2—C30.6 (3)N2—C11—C12—C13178.08 (17)
Cl1—C1—C2—C3180.00 (14)C11—C12—C13—C140.2 (3)
C6—C1—C2—Cl2178.11 (14)C11—C12—C13—C17179.24 (17)
Cl1—C1—C2—Cl21.3 (2)C12—C13—C14—C150.0 (3)
C1—C2—C3—C40.1 (3)C17—C13—C14—C15179.43 (18)
Cl2—C2—C3—C4178.65 (15)C12—C13—C14—C16179.13 (16)
C2—C3—C4—C51.0 (3)C17—C13—C14—C160.3 (3)
C3—C4—C5—C61.5 (3)C13—C14—C15—C100.2 (3)
C2—C1—C6—C50.1 (3)C16—C14—C15—C10178.96 (15)
Cl1—C1—C6—C5179.47 (14)N3—C10—C15—C14178.80 (16)
C2—C1—C6—C7179.36 (16)C11—C10—C15—C140.2 (2)
Cl1—C1—C6—C70.0 (2)N3—C9—C18—C20178.47 (16)
C4—C5—C6—C11.0 (3)N2—C9—C18—C201.0 (2)
C4—C5—C6—C7179.58 (17)N3—C9—C18—C191.2 (3)
C8—N1—C7—C231.9 (2)N2—C9—C18—C19178.29 (15)
C8—N1—C7—C6178.42 (14)C9—C18—C20—C210.5 (2)
C1—C6—C7—N167.7 (2)C19—C18—C20—C21177.75 (15)
C5—C6—C7—N1112.84 (18)N1—C8—C21—C20179.41 (15)
C1—C6—C7—C23111.97 (19)N2—C8—C21—C200.9 (2)
C5—C6—C7—C2367.5 (2)N1—C8—C21—C222.0 (2)
C7—N1—C8—N2179.53 (14)N2—C8—C21—C22177.66 (13)
C7—N1—C8—C210.2 (2)C18—C20—C21—C80.4 (2)
C11—N2—C8—N12.2 (2)C18—C20—C21—C22177.98 (15)
C9—N2—C8—N1179.90 (14)C8—C21—C22—C27176.46 (15)
C11—N2—C8—C21177.54 (15)C20—C21—C22—C272.0 (2)
C9—N2—C8—C210.4 (2)C8—C21—C22—C231.8 (2)
C10—N3—C9—N20.31 (18)C20—C21—C22—C23179.73 (15)
C10—N3—C9—C18179.18 (16)C27—C22—C23—C240.4 (2)
C8—N2—C9—N3178.98 (14)C21—C22—C23—C24177.92 (14)
C11—N2—C9—N30.62 (18)C27—C22—C23—C7178.34 (15)
C8—N2—C9—C180.6 (2)C21—C22—C23—C70.0 (2)
C11—N2—C9—C18178.94 (14)N1—C7—C23—C24175.85 (15)
C9—N3—C10—C15178.96 (17)C6—C7—C23—C243.8 (2)
C9—N3—C10—C110.12 (18)N1—C7—C23—C222.0 (2)
N3—C10—C11—C12179.17 (15)C6—C7—C23—C22178.35 (15)
C15—C10—C11—C120.0 (2)C22—C23—C24—C250.4 (2)
N3—C10—C11—N20.49 (17)C7—C23—C24—C25177.44 (16)
C15—C10—C11—N2178.69 (14)C23—C24—C25—C260.7 (3)
C8—N2—C11—C122.7 (3)C24—C25—C26—C270.3 (3)
C9—N2—C11—C12179.09 (18)C25—C26—C27—C220.5 (3)
C8—N2—C11—C10178.81 (15)C23—C22—C27—C260.9 (2)
C9—N2—C11—C100.63 (16)C21—C22—C27—C26177.38 (15)
C10—C11—C12—C130.2 (2)

Experimental details

Crystal data
Chemical formulaC27H16Cl2N4
Mr467.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5588 (8), 11.0751 (13), 12.2332 (11)
α, β, γ (°)76.985 (9), 75.986 (8), 85.438 (9)
V3)1095.77 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.6 × 0.1 × 0.1
Data collection
DiffractometerOxford-Diffraction Xcalibur-3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.82, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
20237, 4290, 2405
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.072, 1.01
No. of reflections4290
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

 

References

First citationBijan, P. D. & Basu, U. P. (1965). Indian J. Chem. 3, 268–272.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGokhale, U. V. & Seshadri, S. (1987). Dyes Pigm. 8, 157–163.  CrossRef CAS Web of Science Google Scholar
First citationKametami, T. & Fukomoto, K. (1981). The Chemistry of Heterocyclic Compounds: Isoquinolines, Part 1, edited by G. Grethe, p. 139. New York: John Wiley.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNeumeyer, J. L. & Weinhard, K. K. (1970). J. Med. Chem. 13, 613-618.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRajagopal, R. & Seshadri, S. (1991). Dyes Pigm. 17, 57–69.  CrossRef CAS Web of Science Google Scholar
First citationShamma, M. (1972). The Isoquinoline Alkaloids. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolovnenko, T. A., Tarasov, A. V. & Volovenko, Yu. M. (2006). Ukr. Khim. Zh. (Russ. Ed.), 72, 108–111.  CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds