metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η5-penta­methyl­cyclo­penta­dien­yl)cobalt(II)

aDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: brennessel@chem.rochester.edu

(Received 3 March 2009; accepted 4 March 2009; online 11 March 2009)

The crystal structure of the title compound, deca­methyl­cobaltocene, [Co(C10H15)2], has been determined. High-quality single crystals were grown from a cold saturated hexa­methyl­disiloxane solution. The structure is related to the manganese and iron analogs. The molecule has D5d symmetry, with the Co atom in a crystallographic 2/m position. The cobalt–centroid(C5) distance is 1.71Å and the centroid(C5)–Co–centroid(C5) angle is 180°, by symmetry.

Related literature

For the synthesis of the title compound and its electrochemical and magnetic properties, see: Robbins et al. (1982[Robbins, J. L., Edelstein, N., Spencer, B. & Smart, J. C. (1982). J. Am. Chem. Soc. 104, 1882-1893.]). For its formal potential and use as a reducing agent, see: Connelly & Geiger (1996[Connelly, N. G. & Geiger, W. E. (1996). Chem. Rev. 96, 877-910.]). For the isotypic manganese and iron structures, see: Struchkov et al. (1978[Struchkov, Yu. T., Andrianov, V. G., Sal'nikova, T. N., Lyatifov, I. R. & Materikova, R. B. (1978). J. Organomet. Chem. 145, 213-223.]); Freyburg et al. (1979[Freyburg, D. P., Robbins, J. L., Raymond, K. N. & Smart, J. C. (1979). J. Am. Chem. Soc. 101, 892-897.]); Augart et al. (1991[Augart, N., Boese, R. & Schmid, G. (1991). Z. Anorg. Allg. Chem. 595, 27-34.]); Arrais et al. (2003[Arrais, A., Diana, E., Gobetto, R., Milanesio, M., Viterbo, D. & Stanghellini, P. L. (2003). Eur. J. Inorg. Chem. pp. 1186-1192.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H15)2]

  • Mr = 329.37

  • Orthorhombic, C m c a

  • a = 15.0848 (16) Å

  • b = 11.5031 (12) Å

  • c = 10.0105 (10) Å

  • V = 1737.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.28 × 0.28 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.771, Tmax = 0.875

  • 19672 measured reflections

  • 2386 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.07

  • 2386 reflections

  • 84 parameters

  • All H-atom parameters refined

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

Co1—C1 2.0914 (12)
Co1—C3 2.0956 (8)
Co1—C2 2.1113 (8)
C1—C2 1.4304 (12)
C1—C4 1.4961 (18)
C2—C3 1.4231 (12)
C2—C5 1.4935 (14)
C3—C6 1.4950 (13)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of (I) has been conspicuously absent from the literature, despite its being a widely used reducing agent (Connelly & Geiger, 1996). Robbins and co-workers referred to a structural determination in 1982 (Robbins et al., 1982), specifically its D5d symmetry and its similarity to the manganese analog. However, no structural data were presented. Attempts to grow single crystals from toluene and hexane, the latter from which Robbins reported having grown crystals, resulted in very poor quality specimens that were unsuitable for X-ray diffraction experiments. A cold (-38 ° C) saturated hexamethyldisiloxane solution of (I) afforded excellent crystals that resulted in a high quality structural determination.

The structure is isomorphous to that of decamethylferrocene (refcodes DMFERR, Struchkov et al., 1978, DMFERR01, Freyburg et al., 1979, DMFERR02, Arrais et al., 2003) and the low temperature polymorph of decamethylmanganocene (refcodes DMCPMN01 and DMCPMN02, Augart et al., 1991), for which the metal atoms are in crystallographic 2/m positions.

Related literature top

For the synthesis of the title compound and its electrochemical and magnetic properties, see: Robbins et al. (1982). For its formal potential use as a reducing agent, see: Connelly & Geiger (1996). For isomorphous manganese and iron structures, see: Struchkov et al. (1978); Freyburg et al. (1979); Augart et al. (1991); Arrais et al. (2003).

Experimental top

All operations were performed under an inert atmosphere (dinitrogen). Hexamethyldisiloxane was stirred over CaH2 and vacuum transferred from sodium benzophenone ketyl. (I) was purchased from Sigma-Aldrich and used as is. Hexamethyldisiloxane (1 ml) was added to (I) (10 mg, 30 µmol), most of which dissolved over the course of a few hours at room temperature. After filtration through Celite, the filtrate was stored at -38 °C, resulting in dark yellow-brown crystals of (I) after a few hours.

Refinement top

Hydrogen atoms were found from the difference Fourier map and refined independently from their respective carbon atoms with individual isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid (50% probability) drawing of (I). The cobalt atom is in a crystallographic 2/m position.
Bis(η5-pentamethylcyclopentadienyl)cobalt(II) top
Crystal data top
[Co(C10H15)2]F(000) = 708
Mr = 329.37Dx = 1.259 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 4000 reflections
a = 15.0848 (16) Åθ = 3.0–37.5°
b = 11.5031 (12) ŵ = 0.98 mm1
c = 10.0105 (10) ÅT = 100 K
V = 1737.0 (3) Å3Block, dark yellow-brown
Z = 40.28 × 0.28 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2386 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 38.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2525
Tmin = 0.771, Tmax = 0.875k = 1919
19672 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2743P]
where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Co(C10H15)2]V = 1737.0 (3) Å3
Mr = 329.37Z = 4
Orthorhombic, CmcaMo Kα radiation
a = 15.0848 (16) ŵ = 0.98 mm1
b = 11.5031 (12) ÅT = 100 K
c = 10.0105 (10) Å0.28 × 0.28 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1903 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.875Rint = 0.046
19672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.07Δρmax = 0.70 e Å3
2386 reflectionsΔρmin = 0.74 e Å3
84 parameters
Special details top

Experimental. The crystal was examined under N2 and affixed to the end of a glass capillary with viscous oil, which protected the crystal during transfer to the cold stream.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.01533 (7)
C10.00000.17732 (10)0.04617 (12)0.0228 (2)
C20.07677 (6)0.12416 (7)0.10364 (8)0.02149 (15)
C30.04749 (5)0.03551 (7)0.19244 (8)0.01843 (13)
C40.00000.27361 (12)0.05429 (14)0.0348 (3)
H4A0.00000.352 (3)0.013 (2)0.045 (8)*
H4B0.0486 (10)0.2711 (18)0.1133 (16)0.063 (5)*
C50.17089 (8)0.15651 (11)0.07606 (12)0.0340 (2)
H5A0.1798 (16)0.184 (2)0.0134 (18)0.053 (6)*
H5B0.2119 (12)0.0926 (16)0.0778 (19)0.059 (5)*
H5C0.1896 (11)0.2189 (15)0.1358 (16)0.047 (4)*
C60.10544 (7)0.04079 (10)0.27607 (9)0.02731 (18)
H6A0.1134 (15)0.0057 (13)0.360 (3)0.045 (6)*
H6B0.1638 (11)0.0562 (13)0.2287 (15)0.039 (4)*
H6C0.0774 (11)0.1158 (14)0.2912 (14)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01811 (10)0.01380 (9)0.01409 (9)0.0000.0000.00032 (6)
C10.0353 (6)0.0161 (4)0.0170 (4)0.0000.0000.0004 (4)
C20.0245 (3)0.0202 (3)0.0198 (3)0.0054 (3)0.0013 (3)0.0016 (3)
C30.0205 (3)0.0180 (3)0.0168 (3)0.0002 (3)0.0014 (2)0.0006 (2)
C40.0653 (11)0.0183 (5)0.0206 (5)0.0000.0000.0029 (4)
C50.0290 (4)0.0371 (5)0.0359 (5)0.0147 (4)0.0069 (4)0.0063 (4)
C60.0293 (4)0.0292 (4)0.0234 (4)0.0056 (4)0.0068 (3)0.0005 (3)
Geometric parameters (Å, º) top
Co1—C1i2.0914 (12)C2—C31.4231 (12)
Co1—C12.0914 (12)C2—C51.4935 (14)
Co1—C3ii2.0955 (8)C3—C3ii1.4328 (17)
Co1—C32.0956 (8)C3—C61.4950 (13)
Co1—C3i2.0956 (8)C4—H4A0.99 (3)
Co1—C3iii2.0956 (8)C4—H4B0.942 (16)
Co1—C2iii2.1113 (8)C5—H5A0.960 (18)
Co1—C22.1113 (8)C5—H5B0.962 (18)
Co1—C2ii2.1113 (8)C5—H5C0.976 (17)
Co1—C2i2.1113 (8)C6—H6A0.94 (2)
C1—C21.4304 (12)C6—H6B1.016 (16)
C1—C2ii1.4304 (12)C6—H6C0.973 (16)
C1—C41.4961 (18)
C1i—Co1—C1180.0C3—Co1—C2i140.46 (3)
C1i—Co1—C3ii113.16 (4)C3i—Co1—C2i39.54 (3)
C1—Co1—C3ii66.84 (4)C3iii—Co1—C2i66.67 (3)
C1i—Co1—C3113.16 (4)C2iii—Co1—C2i66.53 (5)
C1—Co1—C366.84 (4)C2—Co1—C2i180.0
C3ii—Co1—C339.98 (5)C2ii—Co1—C2i113.47 (5)
C1i—Co1—C3i66.84 (4)C2—C1—C2ii108.12 (10)
C1—Co1—C3i113.16 (4)C2—C1—C4125.94 (5)
C3ii—Co1—C3i140.02 (5)C2ii—C1—C4125.93 (5)
C3—Co1—C3i180.0C2—C1—Co170.85 (6)
C1i—Co1—C3iii66.84 (4)C2ii—C1—Co170.85 (6)
C1—Co1—C3iii113.16 (4)C4—C1—Co1124.99 (9)
C3ii—Co1—C3iii180.0C3—C2—C1107.84 (8)
C3—Co1—C3iii140.02 (5)C3—C2—C5126.09 (9)
C3i—Co1—C3iii39.98 (5)C1—C2—C5126.07 (9)
C1i—Co1—C2iii39.79 (3)C3—C2—Co169.63 (5)
C1—Co1—C2iii140.21 (3)C1—C2—Co169.36 (6)
C3ii—Co1—C2iii140.46 (3)C5—C2—Co1126.81 (7)
C3—Co1—C2iii113.34 (3)C2—C3—C3ii108.08 (5)
C3i—Co1—C2iii66.66 (3)C2—C3—C6126.09 (8)
C3iii—Co1—C2iii39.54 (3)C3ii—C3—C6125.78 (5)
C1i—Co1—C2140.21 (3)C2—C3—Co170.82 (5)
C1—Co1—C239.79 (3)C3ii—C3—Co170.01 (2)
C3ii—Co1—C266.67 (3)C6—C3—Co1126.88 (6)
C3—Co1—C239.54 (3)C1—C4—H4A112.8 (13)
C3i—Co1—C2140.46 (3)C1—C4—H4B113.5 (11)
C3iii—Co1—C2113.33 (3)H4A—C4—H4B107.0 (15)
C2iii—Co1—C2113.47 (5)C2—C5—H5A112.8 (15)
C1i—Co1—C2ii140.21 (3)C2—C5—H5B114.7 (11)
C1—Co1—C2ii39.79 (3)H5A—C5—H5B100.5 (18)
C3ii—Co1—C2ii39.54 (3)C2—C5—H5C110.1 (9)
C3—Co1—C2ii66.67 (3)H5A—C5—H5C106.7 (16)
C3i—Co1—C2ii113.33 (3)H5B—C5—H5C111.4 (14)
C3iii—Co1—C2ii140.46 (3)C3—C6—H6A109.0 (11)
C2iii—Co1—C2ii180.0C3—C6—H6B110.4 (9)
C2—Co1—C2ii66.53 (5)H6A—C6—H6B112.4 (16)
C1i—Co1—C2i39.79 (3)C3—C6—H6C110.7 (9)
C1—Co1—C2i140.21 (3)H6A—C6—H6C107.2 (15)
C3ii—Co1—C2i113.33 (3)H6B—C6—H6C107.2 (13)
C1i—Co1—C1—C222.38 (12)C2iii—Co1—C2—C1141.96 (6)
C3ii—Co1—C1—C280.81 (6)C2ii—Co1—C2—C138.04 (6)
C3—Co1—C1—C237.16 (5)C2i—Co1—C2—C159.99 (6)
C3i—Co1—C1—C2142.84 (5)C1i—Co1—C2—C559.74 (11)
C3iii—Co1—C1—C299.18 (6)C1—Co1—C2—C5120.26 (11)
C2iii—Co1—C1—C262.03 (10)C3ii—Co1—C2—C5158.44 (10)
C2ii—Co1—C1—C2117.97 (10)C3—Co1—C2—C5120.46 (11)
C2i—Co1—C1—C2180.0C3i—Co1—C2—C559.54 (11)
C1i—Co1—C1—C2ii95.59 (13)C3iii—Co1—C2—C521.56 (10)
C3ii—Co1—C1—C2ii37.16 (5)C2iii—Co1—C2—C521.70 (8)
C3—Co1—C1—C2ii80.82 (6)C2ii—Co1—C2—C5158.30 (8)
C3i—Co1—C1—C2ii99.18 (6)C2i—Co1—C2—C5179.75 (9)
C3iii—Co1—C1—C2ii142.84 (5)C1—C2—C3—C3ii1.34 (8)
C2iii—Co1—C1—C2ii180.0C5—C2—C3—C3ii178.27 (8)
C2—Co1—C1—C2ii117.97 (10)Co1—C2—C3—C3ii60.38 (2)
C2i—Co1—C1—C2ii62.03 (10)C1—C2—C3—C6178.77 (9)
C1i—Co1—C1—C4143.40 (12)C5—C2—C3—C60.85 (14)
C3ii—Co1—C1—C4158.17 (3)Co1—C2—C3—C6122.20 (9)
C3—Co1—C1—C4158.17 (3)C1—C2—C3—Co159.04 (7)
C3i—Co1—C1—C421.83 (3)C5—C2—C3—Co1121.35 (9)
C3iii—Co1—C1—C421.83 (3)C1i—Co1—C3—C2142.61 (5)
C2iii—Co1—C1—C458.98 (5)C1—Co1—C3—C237.39 (5)
C2—Co1—C1—C4121.01 (5)C3ii—Co1—C3—C2118.44 (5)
C2ii—Co1—C1—C4121.01 (5)C3i—Co1—C3—C2112.12 (6)
C2i—Co1—C1—C458.99 (5)C3iii—Co1—C3—C261.56 (5)
C2ii—C1—C2—C32.17 (13)C2iii—Co1—C3—C299.14 (7)
C4—C1—C2—C3179.08 (11)C2ii—Co1—C3—C280.87 (7)
Co1—C1—C2—C359.21 (6)C2i—Co1—C3—C2180.0
C2ii—C1—C2—C5177.44 (7)C1i—Co1—C3—C3ii98.952 (19)
C4—C1—C2—C51.30 (17)C1—Co1—C3—C3ii81.049 (19)
Co1—C1—C2—C5121.18 (9)C3i—Co1—C3—C3ii6.32 (2)
C2ii—C1—C2—Co161.38 (8)C3iii—Co1—C3—C3ii180.0
C4—C1—C2—Co1119.87 (12)C2iii—Co1—C3—C3ii142.43 (3)
C1i—Co1—C2—C360.72 (8)C2—Co1—C3—C3ii118.44 (5)
C1—Co1—C2—C3119.28 (8)C2ii—Co1—C3—C3ii37.57 (3)
C3ii—Co1—C2—C337.98 (5)C2i—Co1—C3—C3ii61.56 (5)
C3i—Co1—C2—C3180.0C1i—Co1—C3—C621.37 (9)
C3iii—Co1—C2—C3142.02 (5)C1—Co1—C3—C6158.63 (9)
C2iii—Co1—C2—C398.77 (5)C3ii—Co1—C3—C6120.32 (8)
C2ii—Co1—C2—C381.24 (5)C3i—Co1—C3—C6126.64 (8)
C2i—Co1—C2—C359.29 (5)C3iii—Co1—C3—C659.68 (8)
C1i—Co1—C2—C1180.0C2iii—Co1—C3—C622.11 (9)
C3ii—Co1—C2—C181.30 (6)C2—Co1—C3—C6121.24 (10)
C3—Co1—C2—C1119.28 (8)C2ii—Co1—C3—C6157.89 (9)
C3i—Co1—C2—C160.72 (8)C2i—Co1—C3—C658.76 (10)
C3iii—Co1—C2—C198.70 (6)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Co(C10H15)2]
Mr329.37
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)100
a, b, c (Å)15.0848 (16), 11.5031 (12), 10.0105 (10)
V3)1737.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.28 × 0.28 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.771, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
19672, 2386, 1903
Rint0.046
(sin θ/λ)max1)0.865
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.07
No. of reflections2386
No. of parameters84
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.70, 0.74

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Selected bond lengths (Å) top
Co1—C12.0914 (12)C1—C41.4961 (18)
Co1—C32.0956 (8)C2—C31.4231 (12)
Co1—C22.1113 (8)C2—C51.4935 (14)
C1—C21.4304 (12)C3—C61.4950 (13)
 

References

First citationArrais, A., Diana, E., Gobetto, R., Milanesio, M., Viterbo, D. & Stanghellini, P. L. (2003). Eur. J. Inorg. Chem. pp. 1186–1192.  CSD CrossRef Google Scholar
First citationAugart, N., Boese, R. & Schmid, G. (1991). Z. Anorg. Allg. Chem. 595, 27–34.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnelly, N. G. & Geiger, W. E. (1996). Chem. Rev. 96, 877–910.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFreyburg, D. P., Robbins, J. L., Raymond, K. N. & Smart, J. C. (1979). J. Am. Chem. Soc. 101, 892–897.  Google Scholar
First citationRobbins, J. L., Edelstein, N., Spencer, B. & Smart, J. C. (1982). J. Am. Chem. Soc. 104, 1882–1893.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStruchkov, Yu. T., Andrianov, V. G., Sal'nikova, T. N., Lyatifov, I. R. & Materikova, R. B. (1978). J. Organomet. Chem. 145, 213–223.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds