metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S,R,Rp)-N,N-Di­methyl-1-{2-[(1-phenyl­ethyl)amino­meth­yl]ferrocen­yl}ethanamine

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: jintliu@sdu.edu.cn

(Received 7 March 2009; accepted 11 March 2009; online 25 March 2009)

The title chiral ferrocene compound, [Fe(C5H5)(C18H25N2)], contains one planar and two central chiral centers. It is of inter­est with respect to asymmetric catalysis. The absolute configuration of the planar chirality is Rp at the ferrocene group and those of the two C chiral centers are R at the CH carbon of the ethanamine unit and S at the CH carbon of the phenyl­ethyl­amino substituent. In the ferrocenyl unit, the cyclo­penta­dienyl (Cp) rings are planar, with maximum deviations of 0.002 (2) Å for the substituted and 0.008 (3) Å for the unsubstituted Cp ring. The dihedral angle between the ring planes is 2.12 (15)° and the rings are twisted slightly from an eclipsed conformation by 7.06–7.60°.

Related literature

For background to the chemistry of chiral ferrocene complexes, see: Togni (1996[Togni, A. (1996). Angew. Chem. Int. Ed. 35, 1475-1477.]); Nishibayashi et al. (1996[Nishibayashi, Y., Arikawa, Y., Ohe, K. & Uemura, S. (1996). J. Org. Chem. 61, 1172-1174.]). For their use in asymmetric synthesis, see: Togni et al. (1994[Togni, A., Breutel, C., Schnyder, A., Spindler, F., Landert, H. & Tijani, A. (1994). J. Am. Chem. Soc. 116, 4062-4066.]); Dai et al. (2003[Dai, L. X., Tu, T., You, S. L., Deng, W. P. & Hou, X. L. (2003). Acc. Chem. Res. 36, 659-667.]). For the potential of these compounds as ligands in asymmetric catalysis, see Nikolaides et al. (2008[Nikolaides, K. R., Hoffmann, S. D. & Eppinger, J. (2008). J. Organomet. Chem. 693, 2223-2230.]). For a related structure, see: Liu et al. (2007[Liu, J.-T., Mao, Y.-J., Xi, R.-M. & Dong, W.-L. (2007). Acta Cryst. E63, m2499-m2500.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C18H25N2)]

  • Mr = 390.34

  • Orthorhombic, P 21 21 21

  • a = 7.2081 (1) Å

  • b = 16.5546 (3) Å

  • c = 17.6747 (2) Å

  • V = 2109.07 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.37 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.857

  • 9974 measured reflections

  • 4636 independent reflections

  • 3817 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.04

  • 4636 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1859 Friedel pairs

  • Flack parameter: 0.010 (17)

Table 1
Selected torsion angles (°)

C1—Cg1—Cg2—C6 7.60 C4—Cg1—Cg2—C9 7.51
C2—Cg1—Cg2—C7 7.06 C5—Cg1—Cg2—C10 7.16
C3—Cg1—Cg2—C8 7.38    
Cg1 is the centroid of the C1–C5 Cp ring and Cg2 is the centroid of the C6–C10 Cp ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ferrocenes with chirality are increasing their importance as chiral ligands in asymmetric catalysis (Togni, 1996, Nishibayashi et al., 1996). Especially ferrocene-based ligands incorporating both planar and central chirality are very important and some of them have already been applied in hydrogenation, allylic alkylation, and hydroboration (Togni et al., 1994, Dai et al., 2003). We are interested in the synthesis and the fascinating properties of chiral ferrocenes with both central and planar chirality (Liu et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The absolute configuration of the molecule is Rp at the ferrocene group, R and S at the asymmetric carbon atoms C11 and C16 respectively. Both N atoms have a pyramidal geometry with C—N—C angles between 112.0 (2) and 113.95 (18)°. The N lone-pairs are not involved in short intra- or intermolecular interactions. The two N atoms lie on the same coordination plane and may be available to coordinate to metal ions as bidentate ligands or to act as a ligand for asymmetric catalysis (Nikolaides et al., 2008).

In the molecule, the cyclopentadienyl(Cp) rings are almost parallel with a dihedral angle of 2.12 (15)° between the Cp ring planes. The Cp rings are twisted slightly from the eclipsed conformation. The values of torsion angles of the two Cp rings (C—Cg1—Cg2—C) are in the range 7.06–7.61° (Table 1). The benzene and Cp rings are obviously not parallel. The dihedral angle between the substituted Cp ring and the benzene ring is 53.59 (13)°. The Fe—C bond distances within the ferrocene group are in the range of 2.023 (3)–2.046 (2)Å for the unsubstituted cyclopentadienyl (Cp) ring (C1–C5) and 2.024 (2)–2.052 (2)Å for the substituted Cp ring (C6–C10).

Related literature top

For background to the chemistry of chiral ferrocene complexes, see: Togni (1996); Nishibayashi et al. (1996). For their use in asymmetric synthesis, see: Togni et al. (1994); Dai et al. (2003). For the potential of these compounds as ligands in asymmetric catalysis, see Nikolaides et al. (2008). For a related structure, see: Liu et al. (2007).

Experimental top

(R,Sp)-2-[1-(dimethylamino)ethyl]ferrocenylaldehyde(0.285 g, 1 mmol) was dissolved in anhydrous chloroform (30 ml) and (S)-1-phenylethanamine(0.121 mg, 1 mmol) was added. The red solution was refluxed under a nitrogen atmosphere for 2 h. After removing the solvent, the residue was dissolved in 30 ml dry methanol. 0.160 g NaBH4 were added in small portions. The mixture was stirred for 30 min, then 20 ml, 1 mol/L aqueous NaOH was added and the mixture was extracted with CHCl3(3×30 ml). The combined organic phase was dried with anhydrous NaCO3. The solvent was evaporated in vacuo and the residue was purified by column chromatography (silica gel; hexane-ethyl acetate, 6:2) giving the title compound as yellow crystals (0.356 mg, 91.3%). Single crystals were grown from hexane- ethylacetate (2:1) solution at room temperature.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.98 Å (for the C5H5 groups), 0.93 Å (for the C6H6groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5times for CH3 groups) the equivalent displacement parameters of their parent atoms. The absolute configuration of the structure was determined from the diffraction data using 1859 Friedel pairs with the Flack parameter (Flack, 1983) 0.010 (17).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005) and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probabiltiy level and H atoms omitted.
(S,R,Rp)-N,N-Dimethyl-1-{2-[(1- phenylethyl)aminomethyl]ferrocenyl}ethanamine top
Crystal data top
[Fe(C5H5)(C18H25N2)]Dx = 1.229 Mg m3
Mr = 390.34Melting point: 355 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4056 reflections
a = 7.2081 (1) Åθ = 2.5–26.6°
b = 16.5546 (3) ŵ = 0.72 mm1
c = 17.6747 (2) ÅT = 293 K
V = 2109.07 (5) Å3Prism, orange
Z = 40.37 × 0.24 × 0.22 mm
F(000) = 832
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4636 independent reflections
Radiation source: fine-focus sealed tube3817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.776, Tmax = 0.857k = 1721
9974 measured reflectionsl = 2219
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.31 e Å3
4636 reflectionsΔρmin = 0.32 e Å3
240 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0097 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1859 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.010 (17)
Crystal data top
[Fe(C5H5)(C18H25N2)]V = 2109.07 (5) Å3
Mr = 390.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2081 (1) ŵ = 0.72 mm1
b = 16.5546 (3) ÅT = 293 K
c = 17.6747 (2) Å0.37 × 0.24 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3817 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.857Rint = 0.022
9974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.31 e Å3
S = 1.04Δρmin = 0.32 e Å3
4636 reflectionsAbsolute structure: Flack (1983), 1859 Friedel pairs
240 parametersAbsolute structure parameter: 0.010 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0099 (3)0.12997 (16)0.17507 (15)0.0575 (6)
H11.07340.15960.21550.069*
C20.8903 (4)0.06312 (16)0.18440 (17)0.0640 (7)
H20.85600.03750.23240.077*
C30.8321 (4)0.03934 (17)0.1114 (2)0.0773 (8)
H30.74850.00570.10000.093*
C40.9105 (4)0.0916 (2)0.05836 (17)0.0750 (8)
H40.89260.08900.00350.090*
C51.0207 (3)0.14668 (19)0.09645 (15)0.0633 (7)
H51.09320.19010.07310.076*
C60.6597 (3)0.25943 (12)0.18108 (11)0.0425 (5)
C70.5401 (3)0.19310 (12)0.20037 (11)0.0392 (4)
C80.4708 (3)0.16030 (15)0.13168 (14)0.0525 (5)
H80.38710.11390.12730.063*
C90.5447 (3)0.20488 (18)0.07092 (13)0.0609 (7)
H90.52000.19520.01720.073*
C100.6594 (3)0.26565 (15)0.10043 (13)0.0564 (6)
H100.72890.30540.07070.068*
C110.7553 (4)0.31317 (12)0.23737 (12)0.0550 (5)
H110.79530.27800.27890.066*
C120.9319 (4)0.35294 (18)0.2063 (2)0.0882 (10)
H12A0.90090.38590.16340.132*
H12B1.01820.31180.19110.132*
H12C0.98700.38600.24480.132*
C130.5480 (6)0.4271 (2)0.2146 (3)0.1220 (15)
H13A0.44450.45590.23540.183*
H13B0.50930.39870.16990.183*
H13C0.64470.46450.20170.183*
C140.6865 (6)0.4093 (2)0.3382 (2)0.1248 (16)
H14A0.78240.44690.32460.187*
H14B0.73600.36950.37210.187*
H14C0.58680.43770.36250.187*
C150.4913 (3)0.16768 (12)0.27843 (12)0.0461 (5)
H15A0.43760.11400.27720.055*
H15B0.60290.16550.30910.055*
C160.3378 (4)0.21395 (16)0.39411 (14)0.0633 (7)
H160.46160.20720.41610.076*
C170.2528 (6)0.28883 (17)0.42764 (16)0.1024 (11)
H17A0.33360.33400.41910.154*
H17B0.23560.28130.48100.154*
H17C0.13490.29890.40420.154*
C180.2250 (3)0.13936 (13)0.41281 (11)0.0509 (5)
C190.0457 (4)0.12998 (17)0.38743 (14)0.0650 (7)
H190.00580.16950.35650.078*
C200.0590 (4)0.06375 (19)0.40671 (17)0.0758 (8)
H200.17940.05890.38830.091*
C210.0113 (5)0.00555 (17)0.45218 (17)0.0759 (8)
H210.06120.03840.46630.091*
C220.1906 (5)0.01226 (19)0.47722 (16)0.0807 (10)
H220.24090.02800.50770.097*
C230.2971 (4)0.07837 (17)0.45754 (14)0.0668 (7)
H230.41890.08190.47460.080*
Fe10.75311 (4)0.155327 (15)0.131986 (14)0.04165 (10)
N10.3592 (3)0.22386 (11)0.31260 (10)0.0502 (5)
H1A0.29960.25950.28690.060*
N20.6172 (4)0.36957 (12)0.27003 (14)0.0728 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0306 (11)0.0782 (18)0.0636 (15)0.0089 (11)0.0034 (10)0.0003 (12)
C20.0506 (14)0.0629 (15)0.0785 (17)0.0228 (12)0.0044 (12)0.0085 (13)
C30.0554 (15)0.0600 (16)0.116 (2)0.0148 (12)0.0005 (16)0.0323 (16)
C40.0477 (15)0.109 (2)0.0685 (17)0.0210 (15)0.0076 (13)0.0260 (17)
C50.0323 (11)0.0912 (19)0.0665 (15)0.0067 (12)0.0094 (11)0.0015 (15)
C60.0398 (11)0.0395 (11)0.0483 (11)0.0034 (9)0.0055 (9)0.0042 (9)
C70.0287 (10)0.0402 (10)0.0485 (11)0.0030 (8)0.0048 (8)0.0034 (9)
C80.0258 (9)0.0647 (13)0.0668 (14)0.0042 (9)0.0048 (10)0.0160 (15)
C90.0439 (13)0.0933 (19)0.0457 (13)0.0131 (13)0.0078 (11)0.0003 (13)
C100.0504 (13)0.0651 (15)0.0538 (13)0.0086 (11)0.0042 (12)0.0160 (12)
C110.0559 (12)0.0421 (10)0.0669 (13)0.0068 (12)0.0005 (15)0.0005 (9)
C120.070 (2)0.0742 (19)0.120 (3)0.0304 (15)0.0168 (18)0.0116 (19)
C130.143 (4)0.065 (2)0.157 (4)0.043 (2)0.039 (3)0.013 (2)
C140.122 (3)0.115 (3)0.137 (3)0.041 (2)0.029 (3)0.079 (2)
C150.0461 (12)0.0376 (11)0.0545 (12)0.0032 (9)0.0117 (10)0.0045 (9)
C160.0703 (16)0.0692 (16)0.0503 (13)0.0099 (13)0.0105 (12)0.0073 (12)
C170.148 (3)0.0723 (18)0.0865 (19)0.013 (3)0.045 (3)0.0284 (15)
C180.0549 (15)0.0620 (13)0.0360 (9)0.0027 (11)0.0093 (10)0.0014 (8)
C190.0621 (16)0.0756 (17)0.0574 (15)0.0046 (13)0.0012 (12)0.0194 (12)
C200.0616 (17)0.092 (2)0.0741 (18)0.0082 (15)0.0021 (14)0.0083 (16)
C210.090 (2)0.0652 (17)0.0727 (17)0.0054 (15)0.0308 (17)0.0090 (14)
C220.098 (3)0.0750 (18)0.0695 (17)0.0160 (16)0.0104 (15)0.0252 (14)
C230.0604 (18)0.0846 (18)0.0555 (13)0.0105 (13)0.0007 (12)0.0056 (13)
Fe10.02711 (14)0.05359 (17)0.04423 (15)0.00363 (15)0.00133 (16)0.00439 (12)
N10.0546 (11)0.0482 (10)0.0477 (10)0.0096 (8)0.0138 (9)0.0055 (8)
N20.0835 (16)0.0471 (12)0.0877 (15)0.0094 (11)0.0198 (14)0.0162 (11)
Geometric parameters (Å, º) top
C1—C21.413 (4)C12—H12A0.9600
C1—C51.419 (4)C12—H12B0.9600
C1—Fe12.045 (2)C12—H12C0.9600
C1—H10.9800C13—N21.454 (4)
C2—C31.412 (4)C13—H13A0.9600
C2—Fe12.041 (2)C13—H13B0.9600
C2—H20.9800C13—H13C0.9600
C3—C41.395 (4)C14—N21.460 (4)
C3—Fe12.036 (3)C14—H14A0.9600
C3—H30.9800C14—H14B0.9600
C4—C51.384 (4)C14—H14C0.9600
C4—Fe12.024 (3)C15—N11.462 (2)
C4—H40.9800C15—H15A0.9700
C5—Fe12.033 (2)C15—H15B0.9700
C5—H50.9800C16—N11.458 (3)
C6—C101.429 (3)C16—C171.504 (4)
C6—C71.437 (3)C16—C181.515 (3)
C6—C111.502 (3)C16—H160.9800
C6—Fe12.043 (2)C17—H17A0.9600
C7—C81.421 (3)C17—H17B0.9600
C7—C151.485 (3)C17—H17C0.9600
C7—Fe12.0514 (18)C18—C191.377 (3)
C8—C91.408 (4)C18—C231.384 (3)
C8—Fe12.0368 (19)C19—C201.374 (4)
C8—H80.9800C19—H190.9300
C9—C101.403 (4)C20—C211.353 (4)
C9—Fe12.024 (2)C20—H200.9300
C9—H90.9800C21—C221.371 (4)
C10—Fe12.025 (2)C21—H210.9300
C10—H100.9800C22—C231.381 (4)
C11—N21.482 (3)C22—H220.9300
C11—C121.535 (3)C23—H230.9300
C11—H110.9800N1—H1A0.8600
C2—C1—C5107.5 (2)C7—C15—H15A109.4
C2—C1—Fe169.61 (14)N1—C15—H15B109.4
C5—C1—Fe169.18 (14)C7—C15—H15B109.4
C2—C1—H1126.3H15A—C15—H15B108.0
C5—C1—H1126.3N1—C16—C17109.9 (2)
Fe1—C1—H1126.3N1—C16—C18111.36 (19)
C3—C2—C1107.0 (3)C17—C16—C18111.5 (2)
C3—C2—Fe169.52 (16)N1—C16—H16108.0
C1—C2—Fe169.94 (14)C17—C16—H16108.0
C3—C2—H2126.5C18—C16—H16108.0
C1—C2—H2126.5C16—C17—H17A109.5
Fe1—C2—H2126.5C16—C17—H17B109.5
C4—C3—C2108.7 (3)H17A—C17—H17B109.5
C4—C3—Fe169.44 (17)C16—C17—H17C109.5
C2—C3—Fe169.94 (14)H17A—C17—H17C109.5
C4—C3—H3125.6H17B—C17—H17C109.5
C2—C3—H3125.6C19—C18—C23117.2 (2)
Fe1—C3—H3125.6C19—C18—C16121.6 (2)
C5—C4—C3108.3 (3)C23—C18—C16121.2 (2)
C5—C4—Fe170.42 (15)C20—C19—C18121.7 (3)
C3—C4—Fe170.36 (15)C20—C19—H19119.2
C5—C4—H4125.8C18—C19—H19119.2
C3—C4—H4125.8C21—C20—C19120.6 (3)
Fe1—C4—H4125.8C21—C20—H20119.7
C4—C5—C1108.5 (3)C19—C20—H20119.7
C4—C5—Fe169.67 (14)C20—C21—C22119.2 (3)
C1—C5—Fe170.10 (13)C20—C21—H21120.4
C4—C5—H5125.8C22—C21—H21120.4
C1—C5—H5125.8C21—C22—C23120.5 (3)
Fe1—C5—H5125.8C21—C22—H22119.8
C10—C6—C7106.91 (19)C23—C22—H22119.8
C10—C6—C11128.2 (2)C22—C23—C18120.9 (3)
C7—C6—C11124.79 (18)C22—C23—H23119.6
C10—C6—Fe168.76 (13)C18—C23—H23119.6
C7—C6—Fe169.75 (11)C4—Fe1—C9106.55 (12)
C11—C6—Fe1129.02 (16)C4—Fe1—C10118.70 (12)
C8—C7—C6107.48 (18)C9—Fe1—C1040.54 (10)
C8—C7—C15127.04 (19)C4—Fe1—C539.90 (11)
C6—C7—C15125.40 (18)C9—Fe1—C5124.61 (11)
C8—C7—Fe169.11 (11)C10—Fe1—C5107.13 (11)
C6—C7—Fe169.16 (11)C4—Fe1—C340.20 (12)
C15—C7—Fe1129.67 (14)C9—Fe1—C3119.66 (12)
C9—C8—C7108.6 (2)C10—Fe1—C3153.46 (13)
C9—C8—Fe169.22 (13)C5—Fe1—C367.24 (13)
C7—C8—Fe170.22 (11)C4—Fe1—C8125.42 (11)
C9—C8—H8125.7C9—Fe1—C840.57 (10)
C7—C8—H8125.7C10—Fe1—C868.27 (10)
Fe1—C8—H8125.7C5—Fe1—C8161.76 (11)
C10—C9—C8108.4 (2)C3—Fe1—C8108.50 (11)
C10—C9—Fe169.80 (13)C4—Fe1—C268.29 (12)
C8—C9—Fe170.22 (13)C9—Fe1—C2154.81 (11)
C10—C9—H9125.8C10—Fe1—C2163.91 (11)
C8—C9—H9125.8C5—Fe1—C268.16 (12)
Fe1—C9—H9125.8C3—Fe1—C240.54 (12)
C9—C10—C6108.7 (2)C8—Fe1—C2121.03 (11)
C9—C10—Fe169.66 (14)C4—Fe1—C6153.86 (12)
C6—C10—Fe170.11 (13)C9—Fe1—C668.90 (9)
C9—C10—H10125.7C10—Fe1—C641.12 (9)
C6—C10—H10125.7C5—Fe1—C6120.20 (11)
Fe1—C10—H10125.7C3—Fe1—C6164.47 (11)
N2—C11—C6108.8 (2)C8—Fe1—C668.77 (9)
N2—C11—C12115.25 (19)C2—Fe1—C6126.70 (10)
C6—C11—C12113.4 (2)C4—Fe1—C167.97 (11)
N2—C11—H11106.2C9—Fe1—C1162.51 (11)
C6—C11—H11106.2C10—Fe1—C1126.11 (11)
C12—C11—H11106.2C5—Fe1—C140.72 (10)
C11—C12—H12A109.5C3—Fe1—C167.64 (11)
C11—C12—H12B109.5C8—Fe1—C1156.02 (11)
H12A—C12—H12B109.5C2—Fe1—C140.45 (11)
C11—C12—H12C109.5C6—Fe1—C1108.25 (10)
H12A—C12—H12C109.5C4—Fe1—C7163.22 (11)
H12B—C12—H12C109.5C9—Fe1—C768.60 (9)
N2—C13—H13A109.5C10—Fe1—C768.78 (9)
N2—C13—H13B109.5C5—Fe1—C7155.95 (10)
H13A—C13—H13B109.5C3—Fe1—C7127.02 (11)
N2—C13—H13C109.5C8—Fe1—C740.67 (9)
H13A—C13—H13C109.5C2—Fe1—C7108.85 (10)
H13B—C13—H13C109.5C6—Fe1—C741.09 (8)
N2—C14—H14A109.5C1—Fe1—C7121.37 (9)
N2—C14—H14B109.5C16—N1—C15113.94 (19)
H14A—C14—H14B109.5C16—N1—H1A123.0
N2—C14—H14C109.5C15—N1—H1A123.0
H14A—C14—H14C109.5C13—N2—C14112.2 (3)
H14B—C14—H14C109.5C13—N2—C11112.3 (2)
N1—C15—C7110.97 (16)C14—N2—C11112.0 (3)
N1—C15—H15A109.4
C5—C1—C2—C30.9 (3)C1—C5—Fe1—C749.8 (3)
Fe1—C1—C2—C359.90 (17)C2—C3—Fe1—C4120.1 (2)
C5—C1—C2—Fe159.04 (17)C4—C3—Fe1—C980.4 (2)
C1—C2—C3—C41.4 (3)C2—C3—Fe1—C9159.44 (15)
Fe1—C2—C3—C458.77 (19)C4—C3—Fe1—C1045.2 (3)
C1—C2—C3—Fe160.17 (17)C2—C3—Fe1—C10165.3 (2)
C2—C3—C4—C51.4 (3)C4—C3—Fe1—C537.59 (16)
Fe1—C3—C4—C560.48 (19)C2—C3—Fe1—C582.53 (18)
C2—C3—C4—Fe159.08 (18)C4—C3—Fe1—C8123.44 (17)
C3—C4—C5—C10.9 (3)C2—C3—Fe1—C8116.43 (17)
Fe1—C4—C5—C159.58 (18)C4—C3—Fe1—C2120.1 (2)
C3—C4—C5—Fe160.44 (19)C4—C3—Fe1—C6159.4 (3)
C2—C1—C5—C40.0 (3)C2—C3—Fe1—C639.3 (5)
Fe1—C1—C5—C459.32 (18)C4—C3—Fe1—C181.85 (18)
C2—C1—C5—Fe159.31 (17)C2—C3—Fe1—C138.27 (16)
C10—C6—C7—C80.3 (2)C4—C3—Fe1—C7164.90 (15)
C11—C6—C7—C8177.2 (2)C2—C3—Fe1—C774.98 (19)
Fe1—C6—C7—C858.68 (13)C9—C8—Fe1—C472.9 (2)
C10—C6—C7—C15176.47 (19)C7—C8—Fe1—C4167.16 (16)
C11—C6—C7—C150.5 (3)C7—C8—Fe1—C9119.9 (2)
Fe1—C6—C7—C15124.58 (19)C9—C8—Fe1—C1037.60 (15)
C10—C6—C7—Fe158.96 (15)C7—C8—Fe1—C1082.29 (14)
C11—C6—C7—Fe1124.1 (2)C9—C8—Fe1—C541.1 (4)
C6—C7—C8—C90.1 (2)C7—C8—Fe1—C5161.0 (3)
C15—C7—C8—C9176.6 (2)C9—C8—Fe1—C3114.31 (18)
Fe1—C7—C8—C958.76 (15)C7—C8—Fe1—C3125.79 (15)
C6—C7—C8—Fe158.71 (14)C9—C8—Fe1—C2157.09 (16)
C15—C7—C8—Fe1124.6 (2)C7—C8—Fe1—C283.01 (16)
C7—C8—C9—C100.2 (3)C9—C8—Fe1—C681.95 (16)
Fe1—C8—C9—C1059.58 (17)C7—C8—Fe1—C637.95 (12)
C7—C8—C9—Fe159.38 (15)C9—C8—Fe1—C1169.3 (2)
C8—C9—C10—C60.4 (3)C7—C8—Fe1—C149.4 (3)
Fe1—C9—C10—C659.47 (16)C9—C8—Fe1—C7119.9 (2)
C8—C9—C10—Fe159.84 (17)C3—C2—Fe1—C436.93 (17)
C7—C6—C10—C90.4 (3)C1—C2—Fe1—C481.06 (18)
C11—C6—C10—C9177.2 (2)C3—C2—Fe1—C945.8 (3)
Fe1—C6—C10—C959.19 (17)C1—C2—Fe1—C9163.8 (2)
C7—C6—C10—Fe159.59 (14)C3—C2—Fe1—C10155.9 (3)
C11—C6—C10—Fe1123.6 (2)C1—C2—Fe1—C1037.9 (4)
C10—C6—C11—N2101.0 (3)C3—C2—Fe1—C580.05 (19)
C7—C6—C11—N275.2 (3)C1—C2—Fe1—C537.95 (16)
Fe1—C6—C11—N2166.40 (16)C1—C2—Fe1—C3118.0 (2)
C10—C6—C11—C1228.7 (3)C3—C2—Fe1—C882.3 (2)
C7—C6—C11—C12155.1 (2)C1—C2—Fe1—C8159.69 (15)
Fe1—C6—C11—C1263.9 (3)C3—C2—Fe1—C6167.79 (17)
C8—C7—C15—N1101.7 (2)C1—C2—Fe1—C674.21 (19)
C6—C7—C15—N174.4 (3)C3—C2—Fe1—C1118.0 (2)
Fe1—C7—C15—N1165.68 (15)C3—C2—Fe1—C7125.43 (17)
N1—C16—C18—C1959.7 (3)C1—C2—Fe1—C7116.57 (16)
C17—C16—C18—C1963.5 (3)C10—C6—Fe1—C447.4 (3)
N1—C16—C18—C23121.7 (2)C7—C6—Fe1—C4165.9 (2)
C17—C16—C18—C23115.2 (3)C11—C6—Fe1—C475.2 (3)
C23—C18—C19—C201.2 (4)C10—C6—Fe1—C937.20 (15)
C16—C18—C19—C20177.5 (2)C7—C6—Fe1—C981.22 (13)
C18—C19—C20—C210.6 (4)C11—C6—Fe1—C9159.8 (2)
C19—C20—C21—C221.8 (5)C7—C6—Fe1—C10118.42 (19)
C20—C21—C22—C231.3 (4)C11—C6—Fe1—C10122.6 (2)
C21—C22—C23—C180.5 (4)C10—C6—Fe1—C581.47 (17)
C19—C18—C23—C221.7 (4)C7—C6—Fe1—C5160.10 (13)
C16—C18—C23—C22177.0 (2)C11—C6—Fe1—C541.2 (2)
C5—C4—Fe1—C9124.64 (19)C10—C6—Fe1—C3163.6 (3)
C3—C4—Fe1—C9116.63 (18)C7—C6—Fe1—C345.1 (4)
C5—C4—Fe1—C1082.5 (2)C11—C6—Fe1—C373.8 (4)
C3—C4—Fe1—C10158.81 (17)C10—C6—Fe1—C880.85 (16)
C3—C4—Fe1—C5118.7 (3)C7—C6—Fe1—C837.57 (13)
C5—C4—Fe1—C3118.7 (3)C11—C6—Fe1—C8156.5 (2)
C5—C4—Fe1—C8165.07 (16)C10—C6—Fe1—C2165.56 (16)
C3—C4—Fe1—C876.2 (2)C7—C6—Fe1—C276.01 (15)
C5—C4—Fe1—C281.49 (19)C11—C6—Fe1—C242.9 (2)
C3—C4—Fe1—C237.24 (17)C10—C6—Fe1—C1124.46 (15)
C5—C4—Fe1—C648.9 (3)C7—C6—Fe1—C1117.11 (13)
C3—C4—Fe1—C6167.7 (2)C11—C6—Fe1—C11.8 (2)
C5—C4—Fe1—C137.75 (17)C10—C6—Fe1—C7118.42 (19)
C3—C4—Fe1—C180.98 (18)C11—C6—Fe1—C7118.9 (2)
C5—C4—Fe1—C7164.8 (3)C2—C1—Fe1—C481.93 (19)
C3—C4—Fe1—C746.1 (4)C5—C1—Fe1—C437.02 (19)
C10—C9—Fe1—C4115.05 (17)C2—C1—Fe1—C9156.7 (3)
C8—C9—Fe1—C4125.64 (17)C5—C1—Fe1—C937.8 (4)
C8—C9—Fe1—C10119.3 (2)C2—C1—Fe1—C10167.83 (15)
C10—C9—Fe1—C575.16 (18)C5—C1—Fe1—C1073.2 (2)
C8—C9—Fe1—C5165.53 (15)C2—C1—Fe1—C5118.9 (2)
C10—C9—Fe1—C3156.65 (17)C2—C1—Fe1—C338.36 (18)
C8—C9—Fe1—C384.04 (18)C5—C1—Fe1—C380.6 (2)
C10—C9—Fe1—C8119.3 (2)C2—C1—Fe1—C847.0 (3)
C10—C9—Fe1—C2170.9 (2)C5—C1—Fe1—C8166.0 (2)
C8—C9—Fe1—C251.6 (3)C5—C1—Fe1—C2118.9 (2)
C10—C9—Fe1—C637.72 (14)C2—C1—Fe1—C6125.67 (16)
C8—C9—Fe1—C681.60 (15)C5—C1—Fe1—C6115.39 (17)
C10—C9—Fe1—C146.1 (4)C2—C1—Fe1—C782.42 (17)
C8—C9—Fe1—C1165.4 (3)C5—C1—Fe1—C7158.63 (16)
C10—C9—Fe1—C781.95 (15)C8—C7—Fe1—C438.8 (4)
C8—C9—Fe1—C737.36 (13)C6—C7—Fe1—C4158.1 (4)
C9—C10—Fe1—C481.92 (18)C15—C7—Fe1—C482.6 (4)
C6—C10—Fe1—C4158.28 (14)C8—C7—Fe1—C937.27 (15)
C6—C10—Fe1—C9119.8 (2)C6—C7—Fe1—C982.02 (14)
C9—C10—Fe1—C5123.64 (15)C15—C7—Fe1—C9158.7 (2)
C6—C10—Fe1—C5116.56 (15)C8—C7—Fe1—C1080.94 (15)
C9—C10—Fe1—C350.4 (3)C6—C7—Fe1—C1038.35 (13)
C6—C10—Fe1—C3170.2 (2)C15—C7—Fe1—C10157.7 (2)
C9—C10—Fe1—C837.62 (14)C8—C7—Fe1—C5165.5 (2)
C6—C10—Fe1—C882.17 (15)C6—C7—Fe1—C546.2 (3)
C9—C10—Fe1—C2166.0 (3)C15—C7—Fe1—C573.1 (3)
C6—C10—Fe1—C246.2 (4)C8—C7—Fe1—C374.46 (18)
C9—C10—Fe1—C6119.8 (2)C6—C7—Fe1—C3166.25 (14)
C9—C10—Fe1—C1164.45 (15)C15—C7—Fe1—C346.9 (2)
C6—C10—Fe1—C175.75 (18)C6—C7—Fe1—C8119.29 (18)
C9—C10—Fe1—C781.48 (14)C15—C7—Fe1—C8121.4 (2)
C6—C10—Fe1—C738.32 (13)C8—C7—Fe1—C2116.01 (15)
C1—C5—Fe1—C4119.5 (3)C6—C7—Fe1—C2124.70 (14)
C4—C5—Fe1—C973.4 (2)C15—C7—Fe1—C25.4 (2)
C1—C5—Fe1—C9167.07 (16)C8—C7—Fe1—C6119.29 (18)
C4—C5—Fe1—C10114.5 (2)C15—C7—Fe1—C6119.3 (2)
C1—C5—Fe1—C10125.96 (17)C8—C7—Fe1—C1158.82 (15)
C4—C5—Fe1—C337.86 (19)C6—C7—Fe1—C181.89 (15)
C1—C5—Fe1—C381.7 (2)C15—C7—Fe1—C137.4 (2)
C4—C5—Fe1—C842.1 (4)C17—C16—N1—C15161.4 (3)
C1—C5—Fe1—C8161.6 (3)C18—C16—N1—C1574.6 (3)
C4—C5—Fe1—C281.8 (2)C7—C15—N1—C16166.5 (2)
C1—C5—Fe1—C237.71 (17)C6—C11—N2—C1367.2 (3)
C4—C5—Fe1—C6157.39 (18)C12—C11—N2—C1361.4 (3)
C1—C5—Fe1—C683.07 (19)C6—C11—N2—C14165.4 (2)
C4—C5—Fe1—C1119.5 (3)C12—C11—N2—C1465.9 (3)
C4—C5—Fe1—C7169.3 (2)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C18H25N2)]
Mr390.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.2081 (1), 16.5546 (3), 17.6747 (2)
V3)2109.07 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.37 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.776, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
9974, 4636, 3817
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.04
No. of reflections4636
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32
Absolute structureFlack (1983), 1859 Friedel pairs
Absolute structure parameter0.010 (17)

Computer programs: , APEX2 (Bruker, 2005) and SAINT (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Table 1 top
Selected torsion angles (°)
C1—Cg1—Cg2—C67.60C4—Cg1—Cg2—C97.51
C2—Cg1—Cg2—C77.06C5—Cg1—Cg2—C107.16
C3—Cg1—Cg2—C87.38
Cg1 is the centroid of the C1–C5 Cp ring and Cg2 is the centroid of the C6–C10 Cp ring.
 

Acknowledgements

The authors thank the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, L. X., Tu, T., You, S. L., Deng, W. P. & Hou, X. L. (2003). Acc. Chem. Res. 36, 659–667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, J.-T., Mao, Y.-J., Xi, R.-M. & Dong, W.-L. (2007). Acta Cryst. E63, m2499–m2500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNikolaides, K. R., Hoffmann, S. D. & Eppinger, J. (2008). J. Organomet. Chem. 693, 2223–2230.  Web of Science CSD CrossRef CAS Google Scholar
First citationNishibayashi, Y., Arikawa, Y., Ohe, K. & Uemura, S. (1996). J. Org. Chem. 61, 1172–1174.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. (1996). Angew. Chem. Int. Ed. 35, 1475–1477.  CrossRef CAS Google Scholar
First citationTogni, A., Breutel, C., Schnyder, A., Spindler, F., Landert, H. & Tijani, A. (1994). J. Am. Chem. Soc. 116, 4062-4066.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds