organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­amino-N,N′-(o-phenyl­ene)di­benz­amide

aDepartment of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa, and bDepartment of Chemistry, Ludiwig-Maximilians University, D-81377 München, Germany
*Correspondence e-mail: thomas.gerber@nmmu.ac.za

(Received 9 March 2009; accepted 13 March 2009; online 25 March 2009)

In the structure of the title compound, C20H18N4O2, the N—H and C=O bonds are trans to each other and the amide O atoms are syn to the ortho amino N atom in the benzoyl rings. The amide groups form dihedral angles of 8.4 (2) and 13.8 (2)° with their respective benzoyl rings, and dihedral angles of 51.85 (16) and 51.19 (17)° with the phenyl­enediamine ring. In the crystal, a centrosymmetric dimer is formed by inter­molecular N—H⋯O hydrogen bonds, resulting in an R22(14) descriptor on a unitary level of graph-set analysis, and three intramolecular N—H⋯O bonds also occur.

Related literature

For the synthesis, see: Black & Rothnie (1983[Black, D. S. & Rothnie, N. E. (1983). Aust. J. Chem. 36, 1141-1147.]). For metal coordination, see: Booysen et al. (2008[Booysen, I., Gerber, T. I. A., Hosten, E. & Mayer, P. (2008). J. Iran. Chem. Soc. 5, 689-693.]). For stereoselectivity in synthesis, see: Valik et al. (2002[Valik, M., Dolensky, B., Petrickova, H. & Krul, V. (2002). Collect. Czech. Chem. Commun. 67, 609-621.]). For applications of polyamides, see: Kang et al. (2001[Kang, S. J., Hong, S. I., Park, C. R. & Oh, T. J. (2001). Fibres Polym. 2, 92-97.]). For related structures, see Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1365.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4O2

  • Mr = 346.38

  • Monoclinic, P 21 /n

  • a = 8.7464 (3) Å

  • b = 14.4308 (6) Å

  • c = 13.6161 (6) Å

  • β = 97.291 (3)°

  • V = 1704.69 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 7575 measured reflections

  • 3893 independent reflections

  • 2085 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 0.99

  • 3893 reflections

  • 308 parameters

  • All H-atom parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.849 (17) 1.986 (18) 2.694 (2) 140.4 (17)
N3—H3⋯O1i 0.86 (2) 2.10 (2) 2.929 (2) 163.0 (17)
N4—H42⋯O2 0.97 (3) 1.88 (3) 2.646 (3) 134 (2)
N2—H21⋯O1 0.95 (2) 1.95 (2) 2.667 (2) 130.2 (19)
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work the structure of N,N'-(1,2-phenylene)bis(2-aminobenzamide) has been determined to explore its suitability as a tetradentate ligand for various metal ions. The conformations of N—H and CO bonds in the amide groups are trans to each other (Fig. 1), similar to that observed in other benzamides and benzanilides (Gowda et al., 2003, 2008). Also, the conformations of the amide O atoms are syn to the ortho amino groups in the benzoyl rings. The amide group N1HC1O1 makes dihedral angles of 8.4 (2)° and 51.85 (16)° with the benzoyl and phenylene rings respectively. For the N3HC14O2 group, these values are 13.8 (2)° and 51.19 (17)°. The C2–C7 and C15–C20 benzoyl rings form dihedral angles of 59.64 (17)° and 64.86 (18)° respectively with the phenylene ring.

The conformational arrangement of the rings is mainly determined by intra- and intermolecular hydrogen-bonds. The graph set descriptor for the intramolecular hydrogen bonds is S(6)S(6)S(7) on a unitary level. Centrosymmetric dimers are formed by two intermolecular hydrogen bonds of the type N—H···O resulting in a R22(14) descriptor on a unitary level. The hydrogen bonding pattern is shown in Fig. 2.

Related literature top

For the synthesis, see: Black & Rothnie (1983). For metal coordination, see: Booysen et al. (2008). For stereoselectivity in synthesis, see: Valik et al. (2002). For applications of polyamides, see: Kang et al. (2001). For related structures, see Gowda et al. (2003, 2008). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared according to the literature method (Black & Rothnie, 1983). The purity of the compound was checked by determining its melting point. It was characterized by recording its IR and 1H NMR spectra. Single crystals of the title compound were obtained from a pyridine/ethanol (1:1, v/v) solution.

Refinement top

The H atoms were located in the difference map, their positional and isotropic vibrational parameters were refined freely.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probability level).
[Figure 2] Fig. 2. Hydrogen bonds (dashed lines) determining the conformational arrangement of the rings. For details of the hydrogen bonds see Table 1.
2,2'-Diamino-N,N'-(o-phenylene)dibenzamide top
Crystal data top
C20H18N4O2F(000) = 728
Mr = 346.38Dx = 1.350 Mg m3
Monoclinic, P21/nMelting point: 532 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.7464 (3) ÅCell parameters from 12612 reflections
b = 14.4308 (6) Åθ = 3.1–27.5°
c = 13.6161 (6) ŵ = 0.09 mm1
β = 97.291 (3)°T = 200 K
V = 1704.69 (12) Å3Block, brown
Z = 40.16 × 0.14 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2085 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.049
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 1111
CCD; rotation images; thick slices scansk = 1818
7575 measured reflectionsl = 1717
3893 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3893 reflectionsΔρmax = 0.19 e Å3
308 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (17)
Crystal data top
C20H18N4O2V = 1704.69 (12) Å3
Mr = 346.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7464 (3) ŵ = 0.09 mm1
b = 14.4308 (6) ÅT = 200 K
c = 13.6161 (6) Å0.16 × 0.14 × 0.10 mm
β = 97.291 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2085 reflections with I > 2σ(I)
7575 measured reflectionsRint = 0.049
3893 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122All H-atom parameters refined
S = 0.99Δρmax = 0.19 e Å3
3893 reflectionsΔρmin = 0.20 e Å3
308 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50757 (13)0.19967 (8)1.10126 (9)0.0426 (4)
O20.33370 (13)0.11696 (9)0.75452 (9)0.0431 (4)
N10.45030 (17)0.17105 (11)0.93824 (12)0.0371 (4)
N20.3038 (2)0.28860 (15)1.19702 (14)0.0599 (5)
N30.43678 (16)0.00594 (12)0.84087 (11)0.0364 (4)
N40.1025 (3)0.08932 (14)0.61238 (15)0.0579 (5)
C10.41993 (19)0.21187 (12)1.02250 (14)0.0343 (4)
C20.27907 (18)0.27011 (11)1.01692 (13)0.0350 (4)
C30.2292 (2)0.30615 (13)1.10429 (15)0.0437 (5)
C40.0941 (2)0.35939 (15)1.0947 (2)0.0552 (6)
C50.0119 (2)0.37821 (15)1.00496 (19)0.0566 (6)
C60.0630 (2)0.34564 (15)0.91861 (18)0.0552 (6)
C70.1946 (2)0.29271 (14)0.92620 (16)0.0457 (5)
C80.58760 (18)0.12237 (12)0.92527 (12)0.0334 (4)
C90.57907 (18)0.03780 (12)0.87594 (12)0.0331 (4)
C100.7152 (2)0.00822 (14)0.86314 (14)0.0408 (5)
C110.8571 (2)0.02948 (15)0.89720 (14)0.0451 (5)
C120.8644 (2)0.11444 (14)0.94410 (14)0.0422 (5)
C130.7312 (2)0.16123 (14)0.95732 (13)0.0377 (5)
C140.32233 (19)0.03407 (13)0.77899 (12)0.0346 (4)
C150.18663 (18)0.02232 (12)0.74265 (12)0.0339 (4)
C160.0793 (2)0.00956 (13)0.66357 (13)0.0419 (5)
C170.0521 (2)0.04422 (16)0.63397 (16)0.0501 (5)
C180.0768 (2)0.12620 (16)0.67972 (17)0.0515 (6)
C190.0285 (2)0.15877 (15)0.75605 (16)0.0480 (5)
C200.1582 (2)0.10711 (13)0.78674 (15)0.0408 (5)
H130.7350 (18)0.2213 (13)0.9913 (13)0.043 (5)*
H200.2287 (19)0.1285 (12)0.8428 (13)0.044 (5)*
H10.3885 (19)0.1773 (13)0.8853 (13)0.040 (6)*
H100.7102 (18)0.0671 (13)0.8292 (12)0.041 (5)*
H120.960 (2)0.1435 (12)0.9685 (13)0.047 (5)*
H30.435 (2)0.0647 (15)0.8504 (13)0.044 (6)*
H110.951 (2)0.0045 (13)0.8853 (15)0.062 (6)*
H50.083 (2)0.4151 (14)1.0036 (13)0.059 (6)*
H170.132 (2)0.0200 (13)0.5784 (14)0.056 (6)*
H180.168 (2)0.1625 (14)0.6568 (14)0.056 (6)*
H70.231 (2)0.2720 (13)0.8671 (15)0.050 (5)*
H40.063 (2)0.3824 (14)1.1515 (16)0.068 (7)*
H190.011 (2)0.2158 (14)0.7871 (13)0.052 (6)*
H410.027 (3)0.1085 (16)0.5717 (18)0.076 (8)*
H60.010 (2)0.3612 (14)0.8493 (17)0.076 (7)*
H420.178 (3)0.1311 (17)0.647 (2)0.090 (8)*
H210.405 (3)0.2631 (16)1.2012 (17)0.083 (8)*
H220.288 (3)0.3284 (19)1.2441 (19)0.090 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0509 (8)0.0387 (8)0.0375 (8)0.0062 (6)0.0034 (6)0.0021 (6)
O20.0499 (8)0.0374 (8)0.0412 (8)0.0016 (6)0.0027 (6)0.0061 (6)
N10.0371 (9)0.0387 (10)0.0349 (10)0.0081 (7)0.0030 (7)0.0038 (8)
N20.0682 (14)0.0678 (14)0.0466 (12)0.0046 (10)0.0183 (10)0.0122 (10)
N30.0359 (9)0.0300 (10)0.0427 (10)0.0037 (7)0.0025 (7)0.0016 (8)
N40.0608 (12)0.0560 (13)0.0524 (12)0.0074 (10)0.0109 (10)0.0137 (10)
C10.0402 (10)0.0275 (10)0.0362 (11)0.0034 (8)0.0095 (9)0.0002 (8)
C20.0378 (10)0.0266 (10)0.0423 (11)0.0012 (8)0.0113 (8)0.0010 (8)
C30.0472 (11)0.0365 (12)0.0508 (13)0.0022 (9)0.0190 (10)0.0027 (9)
C40.0543 (13)0.0481 (14)0.0689 (17)0.0041 (11)0.0304 (13)0.0071 (12)
C50.0436 (12)0.0419 (13)0.0876 (19)0.0088 (10)0.0206 (13)0.0030 (12)
C60.0478 (12)0.0506 (14)0.0675 (16)0.0117 (10)0.0088 (11)0.0100 (12)
C70.0450 (11)0.0459 (13)0.0481 (13)0.0087 (9)0.0135 (10)0.0040 (10)
C80.0332 (9)0.0344 (11)0.0333 (10)0.0045 (8)0.0072 (7)0.0033 (8)
C90.0343 (10)0.0332 (11)0.0318 (10)0.0030 (8)0.0048 (7)0.0029 (8)
C100.0428 (11)0.0397 (12)0.0410 (12)0.0073 (9)0.0089 (9)0.0009 (9)
C110.0380 (11)0.0521 (14)0.0462 (13)0.0092 (10)0.0093 (9)0.0028 (10)
C120.0336 (11)0.0521 (14)0.0409 (12)0.0017 (10)0.0043 (9)0.0058 (10)
C130.0400 (11)0.0370 (12)0.0364 (11)0.0004 (9)0.0054 (8)0.0022 (9)
C140.0388 (10)0.0367 (12)0.0302 (10)0.0053 (9)0.0114 (8)0.0008 (9)
C150.0363 (10)0.0355 (11)0.0303 (10)0.0035 (8)0.0061 (8)0.0022 (8)
C160.0456 (11)0.0428 (13)0.0370 (12)0.0075 (9)0.0041 (9)0.0029 (9)
C170.0438 (12)0.0540 (15)0.0498 (14)0.0046 (11)0.0045 (10)0.0093 (11)
C180.0405 (12)0.0522 (15)0.0613 (15)0.0014 (11)0.0038 (10)0.0189 (12)
C190.0451 (12)0.0421 (13)0.0580 (14)0.0019 (10)0.0113 (10)0.0032 (11)
C200.0406 (11)0.0416 (12)0.0403 (12)0.0018 (9)0.0055 (9)0.0002 (9)
Geometric parameters (Å, º) top
O1—C11.249 (2)C6—H61.02 (2)
O2—C141.249 (2)C7—H70.95 (2)
N1—C11.346 (2)C8—C91.390 (2)
N1—C81.421 (2)C8—C131.394 (2)
N1—H10.849 (17)C9—C101.394 (2)
N2—C31.369 (3)C10—C111.380 (3)
N2—H210.95 (2)C10—H100.966 (19)
N2—H220.89 (3)C11—C121.380 (3)
N3—C141.353 (2)C11—H110.986 (19)
N3—C91.423 (2)C12—C131.378 (3)
N3—H30.86 (2)C12—H120.957 (18)
N4—C161.374 (2)C13—H130.981 (18)
N4—H410.85 (2)C14—C151.472 (2)
N4—H420.97 (3)C15—C201.399 (2)
C1—C21.485 (2)C15—C161.413 (2)
C2—C71.395 (3)C16—C171.403 (3)
C2—C31.417 (2)C17—C181.367 (3)
C3—C41.402 (3)C17—H171.024 (19)
C4—C51.364 (3)C18—C191.380 (3)
C4—H40.91 (2)C18—H180.97 (2)
C5—C61.391 (3)C19—C201.378 (3)
C5—H50.98 (2)C19—H190.945 (19)
C6—C71.374 (3)C20—H200.968 (18)
C1—N1—C8125.70 (16)C8—C9—C10118.97 (16)
C1—N1—H1120.3 (12)C8—C9—N3122.85 (14)
C8—N1—H1113.8 (12)C10—C9—N3118.14 (17)
C3—N2—H21117.2 (14)C11—C10—C9121.07 (19)
C3—N2—H22116.6 (16)C11—C10—H10119.5 (10)
H21—N2—H22116 (2)C9—C10—H10119.4 (10)
C14—N3—C9124.48 (17)C10—C11—C12119.55 (18)
C14—N3—H3119.2 (12)C10—C11—H11118.6 (11)
C9—N3—H3114.9 (12)C12—C11—H11121.8 (11)
C16—N4—H41116.7 (15)C13—C12—C11120.32 (18)
C16—N4—H42114.2 (15)C13—C12—H12117.2 (11)
H41—N4—H42122 (2)C11—C12—H12122.5 (11)
O1—C1—N1120.28 (16)C12—C13—C8120.35 (19)
O1—C1—C2122.57 (16)C12—C13—H13121.0 (10)
N1—C1—C2117.15 (16)C8—C13—H13118.6 (10)
C7—C2—C3118.21 (17)O2—C14—N3119.81 (16)
C7—C2—C1121.35 (16)O2—C14—C15121.86 (16)
C3—C2—C1120.42 (16)N3—C14—C15118.33 (17)
N2—C3—C4118.99 (19)C20—C15—C16118.35 (17)
N2—C3—C2123.05 (17)C20—C15—C14121.25 (16)
C4—C3—C2117.92 (19)C16—C15—C14120.38 (17)
C5—C4—C3122.4 (2)N4—C16—C17119.08 (19)
C5—C4—H4120.6 (13)N4—C16—C15122.20 (18)
C3—C4—H4117.0 (13)C17—C16—C15118.67 (19)
C4—C5—C6120.0 (2)C18—C17—C16121.3 (2)
C4—C5—H5118.2 (11)C18—C17—H17120.0 (10)
C6—C5—H5121.8 (11)C16—C17—H17118.7 (10)
C7—C6—C5118.7 (2)C17—C18—C19120.6 (2)
C7—C6—H6118.2 (12)C17—C18—H18119.4 (11)
C5—C6—H6123.1 (12)C19—C18—H18120.0 (11)
C6—C7—C2122.8 (2)C20—C19—C18119.3 (2)
C6—C7—H7118.4 (11)C20—C19—H19120.4 (11)
C2—C7—H7118.8 (11)C18—C19—H19120.3 (11)
C9—C8—C13119.69 (15)C19—C20—C15121.82 (19)
C9—C8—N1119.96 (15)C19—C20—H20118.9 (10)
C13—C8—N1120.27 (16)C15—C20—H20119.1 (10)
C8—N1—C1—O18.7 (3)C8—C9—C10—C111.0 (3)
C8—N1—C1—C2171.86 (15)N3—C9—C10—C11178.69 (17)
O1—C1—C2—C7171.32 (17)C9—C10—C11—C120.5 (3)
N1—C1—C2—C79.2 (2)C10—C11—C12—C130.3 (3)
O1—C1—C2—C37.1 (3)C11—C12—C13—C81.3 (3)
N1—C1—C2—C3172.34 (16)C9—C8—C13—C122.8 (3)
C7—C2—C3—N2179.81 (18)N1—C8—C13—C12179.49 (16)
C1—C2—C3—N21.3 (3)C9—N3—C14—O25.0 (2)
C7—C2—C3—C42.6 (3)C9—N3—C14—C15175.18 (14)
C1—C2—C3—C4178.97 (16)O2—C14—C15—C20165.42 (16)
N2—C3—C4—C5178.67 (19)N3—C14—C15—C2014.4 (2)
C2—C3—C4—C50.9 (3)O2—C14—C15—C1612.8 (2)
C3—C4—C5—C61.2 (3)N3—C14—C15—C16167.37 (15)
C4—C5—C6—C71.6 (3)C20—C15—C16—N4176.21 (16)
C5—C6—C7—C20.1 (3)C14—C15—C16—N45.5 (3)
C3—C2—C7—C62.2 (3)C20—C15—C16—C171.1 (3)
C1—C2—C7—C6179.34 (17)C14—C15—C16—C17177.18 (14)
C1—N1—C8—C9135.32 (18)N4—C16—C17—C18177.07 (18)
C1—N1—C8—C1348.0 (3)C15—C16—C17—C180.3 (3)
C13—C8—C9—C102.6 (2)C16—C17—C18—C190.7 (3)
N1—C8—C9—C10179.31 (16)C17—C18—C19—C200.8 (3)
C13—C8—C9—N3179.83 (16)C18—C19—C20—C150.0 (3)
N1—C8—C9—N33.1 (2)C16—C15—C20—C191.0 (3)
C14—N3—C9—C855.6 (2)C14—C15—C20—C19177.33 (16)
C14—N3—C9—C10126.74 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.849 (17)1.986 (18)2.694 (2)140.4 (17)
N3—H3···O1i0.86 (2)2.10 (2)2.929 (2)163.0 (17)
N4—H42···O20.97 (3)1.88 (3)2.646 (3)134 (2)
N2—H21···O10.95 (2)1.95 (2)2.667 (2)130.2 (19)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H18N4O2
Mr346.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.7464 (3), 14.4308 (6), 13.6161 (6)
β (°) 97.291 (3)
V3)1704.69 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7575, 3893, 2085
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 0.99
No. of reflections3893
No. of parameters308
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.849 (17)1.986 (18)2.694 (2)140.4 (17)
N3—H3···O1i0.86 (2)2.10 (2)2.929 (2)163.0 (17)
N4—H42···O20.97 (3)1.88 (3)2.646 (3)134 (2)
N2—H21···O10.95 (2)1.95 (2)2.667 (2)130.2 (19)
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors thank Professor P. Klüfers for generous allocation of diffractometer time.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlack, D. S. & Rothnie, N. E. (1983). Aust. J. Chem. 36, 1141–1147.  CrossRef CAS Google Scholar
First citationBooysen, I., Gerber, T. I. A., Hosten, E. & Mayer, P. (2008). J. Iran. Chem. Soc. 5, 689–693.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKang, S. J., Hong, S. I., Park, C. R. & Oh, T. J. (2001). Fibres Polym. 2, 92–97.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValik, M., Dolensky, B., Petrickova, H. & Krul, V. (2002). Collect. Czech. Chem. Commun. 67, 609–621.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds