organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o871-o872

5-Chloro-8-hydr­­oxy-6-methyl-1,4-naphtho­quinone

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Engineering, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 17 March 2009; accepted 19 March 2009; online 25 March 2009)

The mol­ecule of the title compound, C11H7ClO3, is planar, with a maximum deviation of 0.0383 (10) Å from the naphthoquinone plane. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds. Short intra­molecular Cl⋯O [2.8234 (8) Å] and O⋯O [2.5530 (11) Å], and inter­molecular Cl⋯Cl [3.2777 (3) Å] contacts further stabilize the crystal structure.

Related literature

For the biological activity of the related compound 7-methyl­juglone, see: Mahapatra et al. (2007[Mahapatra, A., Mativandlela, S. P. N., Binneman, B., Fourie, P. B., Hamilton, C. J., Meyer, J. J. M., Van der Kooy, F., Houghton, P. & Lall, N. (2007). Bioorg. Med. Chem. 15, 7638-7646.]); Van der Kooy & Meyer (2006[Van der Kooy, F. & Meyer, J. J. M. (2006). S. Afr. J. Chem. 59, 60-61.]). For the synthesis of 7-methyl­juglone from the title compound, see: Musgrave & Skoyles (2001[Musgrave, O. C. & Skoyles, D. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1318-1320.]); Mahapatra et al. (2007[Mahapatra, A., Mativandlela, S. P. N., Binneman, B., Fourie, P. B., Hamilton, C. J., Meyer, J. J. M., Van der Kooy, F., Houghton, P. & Lall, N. (2007). Bioorg. Med. Chem. 15, 7638-7646.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H7ClO3

  • Mr = 222.62

  • Monoclinic, C 2/c

  • a = 10.7546 (1) Å

  • b = 10.3104 (1) Å

  • c = 16.8370 (2) Å

  • β = 100.285 (1)°

  • V = 1836.96 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.30 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.945

  • 17328 measured reflections

  • 4015 independent reflections

  • 3356 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.07

  • 4015 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2 0.86 1.73 2.5530 (11) 161
C2—H2A⋯O1i 0.93 2.51 3.4124 (12) 163
C3—H3A⋯O2ii 0.93 2.57 3.3000 (12) 136
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

5-Hydroxy-7-methyl-1,4-naphthoquinone (7-methyljuglone) has recently been reported to exhibit activity against mycobacterium tuberculosis (Van der Kooy & Meyer, 2006; Mahapatra et al., 2007). Naturally occurring 7-methyljuglone is synthesised from 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone in high yield (Musgrave & Skoyles, 2001; Mahapatra et al., 2007). This paper reports the molecular structure of 8-chloro-5-hydroxy-7-methyl-1,4-naphthoquinone; the precursor to synthetic 7-methyljuglone.

The asymmetric unit of (I) consists of one molecule of 8-Chloro-5-hydroxy-7-methyl-1,4-naphthoquinone. The napthoquinone ring is essentially planar with the maximum deviation from planarity being 0.0383 (10) Å for atom C8. The bond lengths in (I) have normal values (Allen et al., 1987).

An intramolecular O–H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C–H···O hydrogen bonds (Table 2) (Fig 2). Short intramolecular Cl···O = 2.8234 (8) Å; O···O = 2.5530 (11)Å and intermolecular Cl···Cli = 3.2777 (3) Å [symmetry code: (i) 1 - x, y, 3/2 - z] contacts further stabilize the crystal packing.

Related literature top

For the biological activity of the related compound 7-methyljuglone, see: Mahapatra et al. (2007); Van der Kooy & Meyer (2006). For the synthesis of 7-methyljuglone from the title compound, see: Musgrave & Skoyles (2001); Mahapatra et al. (2007). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared from the Friedel-Crafts acylation of 4-chloro-3-methylphenol with maleic anhydride (Musgrave & Skoyles, 2001). Repeated Soxhlet extraction of the crude Friedel-Crafts product with n-hexane, and silica gel column chromatography purification [chloroform and n-hexane (1:9)] of the n-hexane extract afforded the title compound. Finally, slow evaporation of a n-hexane solution at 305 K gave single crystals of the title compound.

Refinement top

H atoms were positioned geometrically [C–H = 0.93 (aromatic) or 0.96Å (methyl)] and refined using a riding model, with Uiso(H) = 1.2Ueq(aromatic C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The O bound hydrogen atom was located from the Fourier map and and refined isotropically with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The intramolecular H bond is drawn as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing dimer formation. Dashed lines indicate the hydrogen bonding.
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone top
Crystal data top
C11H7ClO3F(000) = 912
Mr = 222.62Dx = 1.610 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6307 reflections
a = 10.7546 (1) Åθ = 2.8–30.1°
b = 10.3104 (1) ŵ = 0.40 mm1
c = 16.8370 (2) ÅT = 100 K
β = 100.285 (1)°Block, red
V = 1836.96 (3) Å30.30 × 0.21 × 0.14 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4015 independent reflections
Radiation source: fine-focus sealed tube3356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 35.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1217
Tmin = 0.891, Tmax = 0.945k = 1616
17328 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.6106P]
where P = (Fo2 + 2Fc2)/3
4015 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C11H7ClO3V = 1836.96 (3) Å3
Mr = 222.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.7546 (1) ŵ = 0.40 mm1
b = 10.3104 (1) ÅT = 100 K
c = 16.8370 (2) Å0.30 × 0.21 × 0.14 mm
β = 100.285 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4015 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3356 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.945Rint = 0.031
17328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.61 e Å3
4015 reflectionsΔρmin = 0.35 e Å3
137 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60008 (2)0.08776 (3)0.687132 (14)0.02314 (8)
O10.40351 (7)0.18970 (8)0.57005 (5)0.02395 (16)
O20.64859 (7)0.18264 (8)0.31989 (4)0.02085 (15)
O30.83772 (7)0.06289 (8)0.40048 (4)0.02028 (14)
H1O30.78470.10420.36530.030*
C10.46492 (8)0.18621 (9)0.51561 (6)0.01565 (16)
C20.40771 (9)0.23850 (9)0.43571 (6)0.01789 (17)
H2A0.32710.27430.42920.021*
C30.46720 (9)0.23648 (9)0.37229 (6)0.01852 (17)
H3A0.42750.27100.32320.022*
C40.59410 (9)0.18056 (9)0.37912 (5)0.01556 (16)
C50.77541 (8)0.06817 (8)0.46273 (6)0.01477 (15)
C60.83488 (8)0.01527 (9)0.53621 (6)0.01568 (16)
H6A0.91350.02380.53940.019*
C70.77959 (8)0.01969 (9)0.60416 (5)0.01563 (15)
C80.65972 (8)0.07923 (9)0.59849 (5)0.01508 (15)
C90.59512 (8)0.12905 (8)0.52543 (5)0.01356 (15)
C100.65466 (8)0.12451 (8)0.45647 (5)0.01354 (15)
C110.84754 (10)0.03753 (11)0.68182 (6)0.02193 (19)
H11A0.92650.07380.67360.033*
H11B0.79640.10440.69930.033*
H11C0.86320.02900.72220.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02101 (12)0.03306 (14)0.01720 (11)0.00279 (9)0.00841 (8)0.00089 (8)
O10.0164 (3)0.0311 (4)0.0264 (4)0.0055 (3)0.0096 (3)0.0001 (3)
O20.0206 (3)0.0258 (3)0.0170 (3)0.0004 (3)0.0055 (3)0.0009 (3)
O30.0172 (3)0.0258 (3)0.0200 (3)0.0053 (3)0.0093 (3)0.0014 (3)
C10.0117 (3)0.0146 (3)0.0210 (4)0.0004 (3)0.0040 (3)0.0023 (3)
C20.0123 (4)0.0162 (4)0.0243 (4)0.0018 (3)0.0009 (3)0.0017 (3)
C30.0150 (4)0.0188 (4)0.0206 (4)0.0015 (3)0.0000 (3)0.0006 (3)
C40.0146 (4)0.0150 (3)0.0170 (4)0.0012 (3)0.0027 (3)0.0009 (3)
C50.0122 (3)0.0152 (3)0.0181 (4)0.0003 (3)0.0058 (3)0.0017 (3)
C60.0115 (3)0.0164 (4)0.0193 (4)0.0008 (3)0.0034 (3)0.0012 (3)
C70.0126 (3)0.0168 (4)0.0171 (4)0.0006 (3)0.0017 (3)0.0010 (3)
C80.0130 (3)0.0174 (4)0.0154 (4)0.0011 (3)0.0043 (3)0.0013 (3)
C90.0103 (3)0.0137 (3)0.0172 (4)0.0002 (3)0.0040 (3)0.0017 (3)
C100.0113 (3)0.0141 (3)0.0156 (3)0.0001 (3)0.0033 (3)0.0014 (3)
C110.0189 (4)0.0279 (5)0.0177 (4)0.0024 (4)0.0001 (3)0.0016 (3)
Geometric parameters (Å, º) top
Cl1—C81.7287 (9)C5—C61.3980 (13)
O1—C11.2222 (12)C5—C101.4092 (12)
O2—C41.2438 (11)C6—C71.3812 (13)
O3—C51.3423 (11)C6—H6A0.9300
O3—H1O30.8581C7—C81.4156 (13)
C1—C21.4777 (14)C7—C111.5002 (13)
C1—C91.5008 (12)C8—C91.3980 (13)
C2—C31.3393 (14)C9—C101.4234 (12)
C2—H2A0.9300C11—H11A0.9600
C3—C41.4670 (13)C11—H11B0.9600
C3—H3A0.9300C11—H11C0.9600
C4—C101.4667 (13)
C5—O3—H1O399.0C6—C7—C8118.69 (8)
O1—C1—C2118.62 (8)C6—C7—C11119.62 (8)
O1—C1—C9123.19 (9)C8—C7—C11121.69 (8)
C2—C1—C9118.18 (8)C9—C8—C7121.48 (8)
C3—C2—C1122.65 (8)C9—C8—Cl1122.56 (7)
C3—C2—H2A118.7C7—C8—Cl1115.95 (7)
C1—C2—H2A118.7C8—C9—C10118.71 (8)
C2—C3—C4120.92 (9)C8—C9—C1123.27 (8)
C2—C3—H3A119.5C10—C9—C1118.02 (8)
C4—C3—H3A119.5C5—C10—C9119.69 (8)
O2—C4—C10121.37 (8)C5—C10—C4119.08 (8)
O2—C4—C3119.69 (8)C9—C10—C4121.21 (8)
C10—C4—C3118.94 (8)C7—C11—H11A109.5
O3—C5—C6117.51 (8)C7—C11—H11B109.5
O3—C5—C10122.69 (8)H11A—C11—H11B109.5
C6—C5—C10119.80 (8)C7—C11—H11C109.5
C7—C6—C5121.57 (8)H11A—C11—H11C109.5
C7—C6—H6A119.2H11B—C11—H11C109.5
C5—C6—H6A119.2
O1—C1—C2—C3178.75 (9)O1—C1—C9—C82.55 (14)
C9—C1—C2—C30.15 (13)C2—C1—C9—C8178.61 (8)
C1—C2—C3—C40.34 (14)O1—C1—C9—C10176.82 (9)
C2—C3—C4—O2178.28 (9)C2—C1—C9—C102.03 (12)
C2—C3—C4—C101.01 (14)O3—C5—C10—C9178.76 (8)
O3—C5—C6—C7178.08 (8)C6—C5—C10—C91.06 (13)
C10—C5—C6—C71.75 (13)O3—C5—C10—C40.34 (13)
C5—C6—C7—C80.12 (13)C6—C5—C10—C4179.48 (8)
C5—C6—C7—C11179.54 (9)C8—C9—C10—C51.20 (13)
C6—C7—C8—C92.23 (13)C1—C9—C10—C5178.19 (8)
C11—C7—C8—C9178.11 (9)C8—C9—C10—C4177.18 (8)
C6—C7—C8—Cl1177.07 (7)C1—C9—C10—C43.43 (12)
C11—C7—C8—Cl12.59 (12)O2—C4—C10—C52.09 (13)
C7—C8—C9—C102.87 (13)C3—C4—C10—C5178.63 (8)
Cl1—C8—C9—C10176.38 (7)O2—C4—C10—C9176.30 (8)
C7—C8—C9—C1176.48 (8)C3—C4—C10—C92.98 (13)
Cl1—C8—C9—C14.26 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.861.732.5530 (11)161
C2—H2A···O1i0.932.513.4124 (12)163
C3—H3A···O2ii0.932.573.3000 (12)136
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H7ClO3
Mr222.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)10.7546 (1), 10.3104 (1), 16.8370 (2)
β (°) 100.285 (1)
V3)1836.96 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.891, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
17328, 4015, 3356
Rint0.031
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.07
No. of reflections4015
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.861.732.5530 (11)161
C2—H2A···O1i0.932.513.4124 (12)163
C3—H3A···O2ii0.932.573.3000 (12)136
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1/2.
 

Footnotes

Additional Correspondence author e-mail: ohasnah@usm.my.

§Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. HO and AHK thank the Malaysian Government for the FRGS fund (203/PKIMIA/671026). DT-CT thanks Universiti Sains Malaysia for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMahapatra, A., Mativandlela, S. P. N., Binneman, B., Fourie, P. B., Hamilton, C. J., Meyer, J. J. M., Van der Kooy, F., Houghton, P. & Lall, N. (2007). Bioorg. Med. Chem. 15, 7638–7646.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusgrave, O. C. & Skoyles, D. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1318–1320.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Kooy, F. & Meyer, J. J. M. (2006). S. Afr. J. Chem. 59, 60–61.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o871-o872
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds