organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(2,2′-Bi­imidazole-1,1′-di­yl)di­ethanoic acid

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: lianghongze@nbu.edu.cn

(Received 22 March 2009; accepted 24 March 2009; online 28 March 2009)

In the title compound, C10H10N4O4, the two imidazole rings adopt a trans conformation and are inclined to one another at a dihedral angle of 55.64 (4)°. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds into chains running parallel to [010] and layers are formed from these by inter­molecular C—H⋯O hydrogen bonds. Additional C—H⋯O hydrogen bonds produce a three-dimensional network.

Related literature

For the use of 2,2′-biimidazole ligands in metal complex formation, see: Pereira et al. (2006[Pereira, C. C. L., Costa, P. J., Calhorda, M. J., Freire, C., Rodrigues, S. S., Herdtweck, E. & Romao, C. C. (2006). Organometallics, 25, 5223-5234.]); Ion et al. (2007[Ion, L., Morales, D., Nieto, S., Perez, J., Riera, L., Riera, V., Miguel, D., Kowenicki, R. A. & McPartlin, M. (2007). Inorg. Chem. 46, 2846-2853.]). For related structures, see: Barnett et al. (1999[Barnett, W. M., Collier, H. L., Baughman, R. G. & Vizuete, W. G. (1999). J. Chem. Crystallogr. 29, 765-768.], 2002[Barnett, W. M., Baughman, R. G., Secondo, P. M. & Hermansen, C. J. (2002). Acta Cryst. C58, o565-o567.]); Zhang & Liang (2009[Zhang, T. & Liang, H.-Z. (2009). Acta Cryst. E65, o213-o214.]). For preparation of the starting material, see: Barnett et al. (1996[Barnett, W. M., Secondo, P. M. & Collier, H. L. (1996). J. Heterocycl. Chem. 33, 1363-1365.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4O4

  • Mr = 250.22

  • Orthorhombic, P b c a

  • a = 8.4327 (17) Å

  • b = 15.116 (3) Å

  • c = 16.702 (3) Å

  • V = 2129.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.51 × 0.27 × 0.2 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.961, Tmax = 0.978

  • 18907 measured reflections

  • 2436 independent reflections

  • 2159 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.05

  • 2436 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.87 1.75 2.6137 (13) 176
O3—H10⋯N4ii 0.85 1.72 2.5666 (13) 176
C4—H2⋯N4 0.97 2.54 3.2234 (17) 127
C4—H3⋯O2iii 0.97 2.24 3.0675 (16) 142
C2—H5⋯O4iv 0.93 2.48 3.2286 (16) 138
C8—H7⋯O1v 0.93 2.55 3.3610 (15) 146
C9—H8⋯N2 0.97 2.62 3.2611 (16) 124
C9—H9⋯O4vi 0.97 2.59 3.3391 (15) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) -x, -y+1, -z+1; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2'-Biimidazole (H2biim) derivatives as versatile ligands are widely used in the construction of metal complexes (Pereira et al., 2006; Ion et al., 2007). Here, we report the synthesis and crystal structure of the title compound. As shown in Fig.1, the two imidazole rings adopt a trans conformation and are inclined to one another at dihedral angle of 55.64 (4)°. while most unconjugated disubstituted biimidazole derivatives show an almost coplanar orientation of the two imidazole rings (Barnett, et al., 1999, 2002). This is probably due to the presence of the strong intermolecular O–H···N hydrogen bonds as observed before (Zhang & Liang, 2009). The values of the C1—N1—C4—C5 and C6—N3—C9—C10 torsion angles are -119.21 (11)° and -111.87 (12)°, respectively.

In the crystal, molecules are linked by intermolecular O–H···N hydrogen bonds into chains running parallel to [010] (Table 1, Fig.2). The chains are linked by intermolecular C–H···O hydrogen bonds into layers. The layers are further held together via C–H···O hydrogen bonds into a three-dimensional network.

Related literature top

For the use of 2,2'-biimidazole ligands in metal complex formation, see: Pereira et al. (2006); Ion et al. (2007). For related structures, see: Barnett et al. (1999, 2002); Zhang & Liang (2009). For preparation of the starting material, see: Barnett et al. (1996).

Experimental top

1,1'-Di(cyanomethyl)-2,2'-biimidazole (Barnett et al., 1996) (0.5 g, 2.36 mmol) was dissolved in 1 M aqueous sulfuric acid (50 ml) and heated at 100°C for 6 h before cooling to room temperature. A white precipitate of the title compound was obtained by adjusting pH to 5, filtered, washed with water, and finally dried in vacuo (yield: 0.35 g, 59.4%). The solid was dissolved in hot N,N-dimethylformamide and cooled to room temperaure slowly to afford colorless block-like crystals.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the labeling of the non-H atoms and 45% probability ellipsoids.
[Figure 2] Fig. 2. A perspective view of a one-dimensional chain running parallel to [010], showing the packing mode and the O–H···N. hydrogen bonds as dashed lines. All H atoms not involved in the hydrogen-bond motifs have been omitted for clarity.
2,2'-(2,2'-Biimidazole-1,1'-diyl)diethanoic acid top
Crystal data top
C10H10N4O4F(000) = 1040
Mr = 250.22Dx = 1.561 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 17425 reflections
a = 8.4327 (17) Åθ = 3.1–27.5°
b = 15.116 (3) ŵ = 0.12 mm1
c = 16.702 (3) ÅT = 295 K
V = 2129.0 (7) Å3Prism, colorless
Z = 80.51 × 0.27 × 0.2 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2436 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.961, Tmax = 0.978l = 2121
18907 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.0303P]
where P = (Fo2 + 2Fc2)/3
2436 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H10N4O4V = 2129.0 (7) Å3
Mr = 250.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.4327 (17) ŵ = 0.12 mm1
b = 15.116 (3) ÅT = 295 K
c = 16.702 (3) Å0.51 × 0.27 × 0.2 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2436 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2159 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.978Rint = 0.026
18907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2436 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09214 (10)0.31447 (5)0.31089 (5)0.01700 (19)
H10.14410.26740.29690.050*
O20.21420 (10)0.38341 (5)0.20945 (5)0.01586 (18)
O40.24120 (10)0.83984 (6)0.49664 (5)0.01865 (19)
N30.11682 (11)0.68000 (6)0.44503 (5)0.0121 (2)
O30.10682 (10)0.91340 (5)0.40169 (5)0.01702 (19)
H100.15960.95750.41890.050*
C50.12876 (13)0.38415 (7)0.26763 (6)0.0124 (2)
N10.11865 (11)0.54801 (6)0.26858 (5)0.0123 (2)
N20.23979 (12)0.67789 (6)0.26608 (5)0.0145 (2)
N40.23766 (12)0.55062 (6)0.44669 (6)0.0148 (2)
C60.18459 (13)0.61528 (7)0.40021 (6)0.0121 (2)
C80.12794 (14)0.65457 (7)0.52369 (6)0.0147 (2)
H70.09160.68570.56810.018*
C100.14467 (13)0.84266 (7)0.44296 (6)0.0127 (2)
C10.18552 (13)0.61380 (7)0.31285 (6)0.0120 (2)
C40.04544 (14)0.46687 (7)0.29809 (7)0.0146 (2)
H30.06470.46540.28140.017*
H20.04770.46700.35620.017*
C90.04736 (13)0.76275 (7)0.41703 (7)0.0137 (2)
H90.05940.76820.43810.016*
H80.04050.76170.35910.016*
C30.13028 (14)0.57281 (7)0.18970 (6)0.0148 (2)
H40.09410.54130.14550.018*
C70.20265 (14)0.57488 (8)0.52384 (7)0.0159 (2)
H60.22640.54190.56930.019*
C20.20507 (14)0.65256 (8)0.18896 (7)0.0154 (2)
H50.22910.68500.14320.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (4)0.0099 (4)0.0199 (4)0.0007 (3)0.0056 (3)0.0007 (3)
O20.0179 (4)0.0146 (4)0.0151 (4)0.0005 (3)0.0031 (3)0.0006 (3)
O40.0233 (4)0.0155 (4)0.0172 (4)0.0035 (3)0.0063 (3)0.0016 (3)
N30.0147 (4)0.0096 (4)0.0120 (4)0.0001 (4)0.0002 (3)0.0005 (3)
O30.0196 (4)0.0103 (4)0.0212 (4)0.0015 (3)0.0053 (3)0.0019 (3)
C50.0118 (5)0.0114 (5)0.0140 (5)0.0021 (4)0.0025 (4)0.0014 (4)
N10.0143 (4)0.0092 (4)0.0134 (4)0.0002 (4)0.0011 (3)0.0010 (3)
N20.0187 (5)0.0116 (4)0.0131 (5)0.0011 (4)0.0000 (4)0.0015 (3)
N40.0184 (5)0.0121 (4)0.0138 (4)0.0022 (4)0.0008 (4)0.0017 (3)
C60.0141 (5)0.0092 (5)0.0132 (5)0.0008 (4)0.0002 (4)0.0000 (4)
C80.0178 (5)0.0154 (5)0.0108 (5)0.0012 (4)0.0012 (4)0.0001 (4)
C100.0140 (5)0.0118 (5)0.0124 (5)0.0008 (4)0.0023 (4)0.0009 (4)
C10.0137 (5)0.0087 (5)0.0135 (5)0.0009 (4)0.0001 (4)0.0004 (4)
C40.0151 (5)0.0102 (5)0.0184 (5)0.0023 (4)0.0034 (4)0.0010 (4)
C90.0152 (5)0.0098 (5)0.0160 (5)0.0017 (4)0.0016 (4)0.0000 (4)
C30.0168 (5)0.0154 (5)0.0122 (5)0.0020 (4)0.0005 (4)0.0020 (4)
C70.0198 (5)0.0162 (5)0.0118 (5)0.0003 (4)0.0007 (4)0.0024 (4)
C20.0191 (5)0.0153 (5)0.0119 (5)0.0007 (4)0.0002 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—C51.3140 (13)N4—C61.3260 (14)
O1—H10.8677N4—C71.3718 (14)
O2—C51.2098 (14)C6—C11.4592 (15)
O4—C101.2117 (14)C8—C71.3594 (17)
N3—C61.3579 (14)C8—H70.9300
N3—C81.3720 (14)C10—C91.5230 (15)
N3—C91.4583 (13)C4—H30.9700
O3—C101.3116 (13)C4—H20.9700
O3—H100.8513C9—H90.9700
C5—C41.5217 (15)C9—H80.9700
N1—C11.3614 (14)C3—C21.3605 (17)
N1—C31.3733 (14)C3—H40.9300
N1—C41.4589 (14)C7—H60.9300
N2—C11.3259 (14)C2—H50.9300
N2—C21.3752 (14)
C5—O1—H1113.0N2—C1—C6125.43 (10)
C6—N3—C8107.30 (9)N1—C1—C6123.50 (10)
C6—N3—C9127.61 (9)N1—C4—C5112.49 (9)
C8—N3—C9125.08 (9)N1—C4—H3109.1
C10—O3—H10109.5C5—C4—H3109.1
O2—C5—O1125.04 (10)N1—C4—H2109.1
O2—C5—C4123.44 (10)C5—C4—H2109.1
O1—C5—C4111.49 (9)H3—C4—H2107.8
C1—N1—C3106.98 (9)N3—C9—C10111.88 (9)
C1—N1—C4127.30 (9)N3—C9—H9109.2
C3—N1—C4125.72 (9)C10—C9—H9109.2
C1—N2—C2105.96 (9)N3—C9—H8109.2
C6—N4—C7106.27 (9)C10—C9—H8109.2
N4—C6—N3110.50 (10)H9—C9—H8107.9
N4—C6—C1124.91 (10)C2—C3—N1106.48 (9)
N3—C6—C1124.37 (10)C2—C3—H4126.8
C7—C8—N3106.36 (9)N1—C3—H4126.8
C7—C8—H7126.8C8—C7—N4109.57 (10)
N3—C8—H7126.8C8—C7—H6125.2
O4—C10—O3125.52 (10)N4—C7—H6125.2
O4—C10—C9122.99 (10)C3—C2—N2109.69 (10)
O3—C10—C9111.47 (9)C3—C2—H5125.2
N2—C1—N1110.89 (9)N2—C2—H5125.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.871.752.6137 (13)176
O3—H10···N4ii0.851.722.5666 (13)176
C4—H2···N40.972.543.2234 (17)127
C4—H3···O2iii0.972.243.0675 (16)142
C2—H5···O4iv0.932.483.2286 (16)138
C8—H7···O1v0.932.553.3610 (15)146
C9—H8···N20.972.623.2611 (16)124
C9—H9···O4vi0.972.593.3391 (15)135
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y+1, z+1; (vi) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N4O4
Mr250.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)8.4327 (17), 15.116 (3), 16.702 (3)
V3)2129.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.51 × 0.27 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.961, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
18907, 2436, 2159
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.05
No. of reflections2436
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.871.752.6137 (13)176
O3—H10···N4ii0.851.722.5666 (13)176
C4—H2···N40.972.543.2234 (17)127
C4—H3···O2iii0.972.243.0675 (16)142
C2—H5···O4iv0.932.483.2286 (16)138
C8—H7···O1v0.932.553.3610 (15)146
C9—H8···N20.972.623.2611 (16)124
C9—H9···O4vi0.972.593.3391 (15)135
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y+1, z+1; (vi) x1/2, y+3/2, z+1.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation of the State Education Ministry for Returned Overseas Chinese Scholars (2006331), the Critical Projects in Science and Technology Department of Zhejiang Province (2007 C21113), the Education Committee of Zhejiang Province (20061696), the Natural Science Foundation of Ningbo City (2007 A610021), the K. C. Wong Magna Fund in Ningbo University and Ningbo University (2005062). We thank Mr W. Xu for collecting the crystal data.

References

First citationBarnett, W. M., Baughman, R. G., Secondo, P. M. & Hermansen, C. J. (2002). Acta Cryst. C58, o565–o567.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarnett, W. M., Collier, H. L., Baughman, R. G. & Vizuete, W. G. (1999). J. Chem. Crystallogr. 29, 765–768.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarnett, W. M., Secondo, P. M. & Collier, H. L. (1996). J. Heterocycl. Chem. 33, 1363–1365.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIon, L., Morales, D., Nieto, S., Perez, J., Riera, L., Riera, V., Miguel, D., Kowenicki, R. A. & McPartlin, M. (2007). Inorg. Chem. 46, 2846–2853.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPereira, C. C. L., Costa, P. J., Calhorda, M. J., Freire, C., Rodrigues, S. S., Herdtweck, E. & Romao, C. C. (2006). Organometallics, 25, 5223–5234.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, T. & Liang, H.-Z. (2009). Acta Cryst. E65, o213–o214.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds