organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[4-(Di­methyl­amino)benzyl­­idene]-3-hydr­­oxy-2-naphthohydrazide

aPharmacy School, Qiqihar Medical University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: huanghaitao09@163.com

(Received 10 March 2009; accepted 16 March 2009; online 28 March 2009)

The title compound, C20H19N3O2, was obtained by the condensation of 4-(dimethyl­amino)benzaldehyde with 3-hydr­oxy-2-naphthohydrazide. The mol­ecule is approximately planar, with an intra­molecular N—H⋯O hydrogen bond involving the imino H atom and the hydr­oxy O atom. The dihedral angle between the benzene ring and the naphthyl mean plane is 2.72 (13)°. In the crystal structure, symmetry-related mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds, forming chains propagating in the c-axis direction.

Related literature

For background on compounds obtained by the condensation of aldehydes with benzohydrazides, see: Qiu & Zhao (2008[Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.]); Yathirajan et al. (2007[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]). For informtaion concerning their biological properties, see: Küçükgüzel et al. (2003[Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Charkoudian et al. (2007[Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031-5042.]). For similar structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Liu & Li (2004[Liu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694-o695.]); Lei et al. (2008[Lei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, o909.]). For bond-length values, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O2

  • Mr = 333.38

  • Monoclinic, P 21 /c

  • a = 8.090 (2) Å

  • b = 15.798 (3) Å

  • c = 13.428 (3) Å

  • β = 98.978 (3)°

  • V = 1695.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.981

  • 13922 measured reflections

  • 3670 independent reflections

  • 1629 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.190

  • S = 1.03

  • 3670 reflections

  • 232 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.898 (10) 1.90 (2) 2.644 (3) 139 (2)
O2—H2⋯O1i 0.82 1.85 2.651 (3) 165
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years compounds derived from the condensation of aldehydes with benzohydrazides have been widely investigated, either for their structures (Qiu & Zhao, 2008; Yathirajan et al., 2007; Salhin et al., 2007) or for their biological properties (Küçükgüzel et al., 2003); Charkoudian et al., 2007). The author reports herein the crystal structure of the title compound, obtained by the condensation of 4-dimethylaminobenzaldehyde with 3-hydroxy-2-naphthohydrazide.

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths are within normal values (Allen et al., 1987), and are comparable to the values in similar compounds (Fun et al., 2008; Liu & Li, 2004; Lei et al., 2008). The molecule is approximately coplanar, with the dihedral angle between the benzene ring and the naphthyl mean-plane being 2.72 (13)°. There is an intramolecular N-H···O hydrogen bond, involving the imino H-atom and the hydroxyl O-atom (Table 1).

In the crystal structure symmetry related molecules are linked via intermolecular O–H···O hydrogen bonds to form one-dimensional chains propagating in the c direction (Fig. 2 and Table 1).

Related literature top

For background on compounds obtained by the condensation of aldehydes with benzohydrazides, see: Qiu & Zhao (2008); Yathirajan et al. (2007); Salhin et al. (2007); For informtaion concerning their biological properties, see: Küçükgüzel et al. (2003); Charkoudian et al. (2007). For similar structures, see: Fun et al. (2008); Liu & Li (2004); Lei et al. (2008). For bond-length values, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the condensation of 4-dimethylaminobenzaldehyde (0.1 mol) and 3-hydroxy-2-naphthohydrazide (0.1 mmol) in ethanol (20 ml). The excess ethanol was removed by distillation. The colorless solid obtained was filtered and washed with ethanol. Single crystals, suitable for X-ray diffraction, were obtained on slow evaporation of a solution of the title compound in ethanol.

Refinement top

The imino H-atom was located in a difference Fourier map and refined with the N–H distance restrained to 0.90 (1) Å. The remainder of the H-atoms were positioned geometrically (C–H = 0.93-0.96 Å, O–H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The ratio of observed to unique reflections is low (44%); this is caused by the fact that the crystal diffracted weakly.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intramolecular N2-H2B···O2 hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The intermolecular O-H···O hydrogen bonds are shown as dashed lines - see Table 1 for details (H-atoms not involved in hydrogen bonding have been omitted for clarity).
N'-[4-(Dimethylamino)benzylidene]-3-hydroxy-2-naphthohydrazide top
Crystal data top
C20H19N3O2F(000) = 704
Mr = 333.38Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 762 reflections
a = 8.090 (2) Åθ = 2.5–24.3°
b = 15.798 (3) ŵ = 0.09 mm1
c = 13.428 (3) ÅT = 298 K
β = 98.978 (3)°Block, colorless
V = 1695.2 (7) Å30.27 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3670 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.977, Tmax = 0.981k = 2020
13922 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2)]
3670 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C20H19N3O2V = 1695.2 (7) Å3
Mr = 333.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.090 (2) ŵ = 0.09 mm1
b = 15.798 (3) ÅT = 298 K
c = 13.428 (3) Å0.27 × 0.23 × 0.22 mm
β = 98.978 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3670 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1629 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.075
13922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0681 restraint
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
3670 reflectionsΔρmin = 0.17 e Å3
232 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0121 (3)0.25089 (12)0.13318 (14)0.0832 (7)
O20.0653 (3)0.25424 (12)0.16764 (12)0.0674 (6)
H20.05890.24960.22890.101*
N10.1356 (3)0.39358 (17)0.07447 (17)0.0672 (7)
N20.0872 (3)0.32477 (18)0.01253 (17)0.0675 (7)
N30.4476 (3)0.76089 (17)0.2113 (2)0.0763 (8)
C10.2663 (4)0.5303 (2)0.0807 (2)0.0619 (8)
C20.2427 (4)0.5531 (2)0.1772 (2)0.0701 (9)
H2A0.18700.51610.21440.084*
C30.2992 (4)0.6282 (2)0.2186 (2)0.0726 (9)
H30.27850.64150.28300.087*
C40.3873 (4)0.6862 (2)0.1683 (2)0.0615 (8)
C50.4095 (4)0.6637 (2)0.0710 (2)0.0756 (10)
H50.46450.70060.03330.091*
C60.3512 (5)0.5876 (2)0.0302 (2)0.0825 (10)
H60.36990.57410.03450.099*
C70.4285 (4)0.7842 (2)0.3128 (2)0.0881 (11)
H7A0.31540.77380.32280.132*
H7B0.45400.84320.32320.132*
H7C0.50360.75120.35990.132*
C80.5351 (4)0.8210 (2)0.1573 (3)0.0897 (11)
H8A0.64260.79850.14960.134*
H8B0.54960.87310.19440.134*
H8C0.47110.83120.09200.134*
C90.2072 (4)0.4523 (2)0.0329 (2)0.0716 (9)
H90.22260.44430.03360.086*
C100.0123 (4)0.25726 (19)0.0455 (2)0.0588 (8)
C110.0405 (3)0.18921 (19)0.02859 (18)0.0542 (7)
C120.0109 (3)0.18591 (18)0.13032 (18)0.0524 (7)
C130.0562 (4)0.11700 (19)0.18837 (19)0.0589 (8)
H130.03040.11520.25350.071*
C140.1407 (3)0.0483 (2)0.1533 (2)0.0580 (8)
C150.1911 (4)0.0237 (2)0.2123 (2)0.0721 (9)
H150.16600.02730.27740.087*
C160.2753 (4)0.0874 (2)0.1759 (3)0.0830 (10)
H160.30730.13440.21610.100*
C170.3150 (4)0.0836 (2)0.0779 (3)0.0845 (10)
H170.37470.12740.05400.101*
C180.2665 (4)0.0159 (2)0.0181 (2)0.0736 (9)
H180.29270.01380.04690.088*
C190.1767 (3)0.0512 (2)0.0534 (2)0.0567 (8)
C200.1228 (4)0.12143 (19)0.00589 (19)0.0598 (8)
H200.14340.12260.07210.072*
H2B0.104 (3)0.3251 (17)0.0520 (10)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.134 (2)0.0852 (15)0.0327 (11)0.0087 (13)0.0201 (11)0.0037 (10)
O20.0922 (15)0.0803 (15)0.0320 (10)0.0019 (12)0.0165 (10)0.0003 (10)
N10.0862 (19)0.0724 (18)0.0434 (14)0.0093 (15)0.0117 (13)0.0071 (13)
N20.0881 (19)0.0812 (19)0.0343 (13)0.0019 (16)0.0136 (13)0.0079 (14)
N30.090 (2)0.079 (2)0.0635 (16)0.0053 (16)0.0226 (15)0.0080 (15)
C10.074 (2)0.072 (2)0.0400 (16)0.0084 (17)0.0105 (15)0.0017 (16)
C20.077 (2)0.087 (2)0.0491 (18)0.0074 (19)0.0202 (16)0.0056 (17)
C30.081 (2)0.096 (3)0.0452 (17)0.007 (2)0.0232 (16)0.0104 (18)
C40.0603 (19)0.076 (2)0.0488 (17)0.0130 (18)0.0099 (15)0.0022 (17)
C50.104 (3)0.079 (2)0.0494 (18)0.003 (2)0.0292 (17)0.0065 (17)
C60.122 (3)0.084 (2)0.0449 (17)0.001 (2)0.0248 (19)0.0022 (18)
C70.101 (3)0.097 (3)0.065 (2)0.007 (2)0.0097 (19)0.0166 (19)
C80.093 (3)0.087 (3)0.093 (3)0.001 (2)0.024 (2)0.003 (2)
C90.092 (3)0.082 (2)0.0416 (17)0.008 (2)0.0126 (17)0.0021 (18)
C100.072 (2)0.072 (2)0.0328 (15)0.0138 (18)0.0078 (14)0.0016 (15)
C110.0633 (19)0.0687 (19)0.0309 (14)0.0171 (16)0.0082 (13)0.0025 (14)
C120.0582 (18)0.065 (2)0.0344 (14)0.0108 (16)0.0090 (13)0.0047 (14)
C130.0668 (19)0.078 (2)0.0325 (14)0.0126 (17)0.0083 (13)0.0040 (15)
C140.0569 (19)0.072 (2)0.0437 (16)0.0118 (16)0.0039 (14)0.0003 (16)
C150.073 (2)0.091 (3)0.0513 (18)0.005 (2)0.0053 (16)0.0084 (18)
C160.079 (2)0.088 (3)0.078 (2)0.010 (2)0.001 (2)0.010 (2)
C170.071 (2)0.097 (3)0.087 (3)0.008 (2)0.015 (2)0.002 (2)
C180.069 (2)0.092 (3)0.063 (2)0.006 (2)0.0202 (17)0.0032 (19)
C190.0537 (18)0.072 (2)0.0448 (16)0.0105 (16)0.0099 (14)0.0046 (16)
C200.069 (2)0.078 (2)0.0344 (15)0.0190 (18)0.0154 (14)0.0037 (15)
Geometric parameters (Å, º) top
O1—C101.228 (3)C7—H7C0.9600
O2—C121.376 (3)C8—H8A0.9600
O2—H20.8200C8—H8B0.9600
N1—C91.268 (3)C8—H8C0.9600
N1—N21.387 (3)C9—H90.9300
N2—C101.336 (3)C10—C111.481 (4)
N2—H2B0.898 (10)C11—C201.379 (4)
N3—C41.370 (4)C11—C121.424 (3)
N3—C71.444 (4)C12—C131.356 (4)
N3—C81.444 (4)C13—C141.403 (4)
C1—C61.376 (4)C13—H130.9300
C1—C21.386 (4)C14—C151.410 (4)
C1—C91.436 (4)C14—C191.417 (3)
C2—C31.359 (4)C15—C161.349 (4)
C2—H2A0.9300C15—H150.9300
C3—C41.399 (4)C16—C171.404 (5)
C3—H30.9300C16—H160.9300
C4—C51.392 (4)C17—C181.359 (4)
C5—C61.375 (4)C17—H170.9300
C5—H50.9300C18—C191.408 (4)
C6—H60.9300C18—H180.9300
C7—H7A0.9600C19—C201.395 (4)
C7—H7B0.9600C20—H200.9300
C12—O2—H2109.5H8B—C8—H8C109.5
C9—N1—N2114.5 (2)N1—C9—C1125.1 (3)
C10—N2—N1121.8 (2)N1—C9—H9117.5
C10—N2—H2B117.9 (18)C1—C9—H9117.5
N1—N2—H2B120.3 (18)O1—C10—N2122.1 (3)
C4—N3—C7122.3 (3)O1—C10—C11120.8 (3)
C4—N3—C8121.7 (3)N2—C10—C11117.1 (2)
C7—N3—C8116.0 (3)C20—C11—C12117.1 (3)
C6—C1—C2116.3 (3)C20—C11—C10116.2 (2)
C6—C1—C9120.0 (3)C12—C11—C10126.6 (3)
C2—C1—C9123.7 (3)C13—C12—O2121.1 (2)
C3—C2—C1121.5 (3)C13—C12—C11120.7 (3)
C3—C2—H2A119.2O2—C12—C11118.2 (3)
C1—C2—H2A119.2C12—C13—C14122.0 (3)
C2—C3—C4122.6 (3)C12—C13—H13119.0
C2—C3—H3118.7C14—C13—H13119.0
C4—C3—H3118.7C13—C14—C15123.3 (3)
N3—C4—C5121.7 (3)C13—C14—C19118.4 (3)
N3—C4—C3122.4 (3)C15—C14—C19118.3 (3)
C5—C4—C3115.9 (3)C16—C15—C14121.1 (3)
C6—C5—C4120.7 (3)C16—C15—H15119.5
C6—C5—H5119.6C14—C15—H15119.5
C4—C5—H5119.6C15—C16—C17120.6 (3)
C5—C6—C1123.0 (3)C15—C16—H16119.7
C5—C6—H6118.5C17—C16—H16119.7
C1—C6—H6118.5C18—C17—C16120.1 (3)
N3—C7—H7A109.5C18—C17—H17119.9
N3—C7—H7B109.5C16—C17—H17119.9
H7A—C7—H7B109.5C17—C18—C19120.7 (3)
N3—C7—H7C109.5C17—C18—H18119.7
H7A—C7—H7C109.5C19—C18—H18119.7
H7B—C7—H7C109.5C20—C19—C18122.6 (3)
N3—C8—H8A109.5C20—C19—C14118.3 (3)
N3—C8—H8B109.5C18—C19—C14119.1 (3)
H8A—C8—H8B109.5C11—C20—C19123.4 (2)
N3—C8—H8C109.5C11—C20—H20118.3
H8A—C8—H8C109.5C19—C20—H20118.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.90 (1)1.90 (2)2.644 (3)139 (2)
O2—H2···O1i0.821.852.651 (3)165
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H19N3O2
Mr333.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.090 (2), 15.798 (3), 13.428 (3)
β (°) 98.978 (3)
V3)1695.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13922, 3670, 1629
Rint0.075
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.190, 1.03
No. of reflections3670
No. of parameters232
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.898 (10)1.90 (2)2.644 (3)139 (2)
O2—H2···O1i0.821.852.651 (3)164.9
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Qiqihar Medical University, China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). Dalton Trans. pp. 5031–5042.  Web of Science CSD CrossRef Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKüçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science PubMed Google Scholar
First citationLei, J.-T., Jiang, Y.-X., Tao, L.-Y., Huang, S.-S. & Zhang, H.-L. (2008). Acta Cryst. E64, o909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, W.-Y. & Li, Y.-Z. (2004). Acta Cryst. E60, o694–o695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2719.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds