organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o765-o766

4-Amino­pyridinium hydrogen succinate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620015, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 February 2009; accepted 25 February 2009; online 14 March 2009)

In the title salt, C5H7N2+·C4H5O4, the asymmetric unit comprises an amino­pyridinium cation and a hydrogen succinate anion as protonation of the aromatic N atom of the 4-amino­pyridine mol­ecule has occurred. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds that lead to a two-dimensional array. Short C—H⋯O contacts are also present.

Related literature

For the biological activity of 4-amino­pyridine, see: Judge & Bever (2006[Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.]); Schwid et al. (1997[Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]); Strupp et al. (2004[Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623-1625.]). For the applications of succinic acid, see: Sauer et al. (2008[Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100-108.]); Song & Lee (2006[Song, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352-361.]); Zeikus et al. (1999[Zeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545-552.]). For related structures, see: Chao & Schempp (1977[Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557-1564.]); Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]); Bhattacharya et al. (1994[Bhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531-537.]); Karle et al. (2003[Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727-749.]); Gopalan et al. (2000[Gopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97-106.]); Leviel et al., (1981[Leviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185-2189.]). For stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C4H5O4

  • Mr = 212.21

  • Monoclinic, P 21 /c

  • a = 6.5443 (3) Å

  • b = 22.2867 (11) Å

  • c = 7.1112 (4) Å

  • β = 114.587 (4)°

  • V = 943.13 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.38 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.991

  • 7174 measured reflections

  • 2176 independent reflections

  • 1483 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.150

  • S = 1.06

  • 2176 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 1.09 1.40 2.482 (2) 176
N1—H1N1⋯O3ii 0.94 (3) 2.00 (3) 2.926 (3) 168 (3)
N2—H1N2⋯O1iii 0.90 (3) 2.59 (3) 3.115 (3) 118 (3)
N2—H1N2⋯O2iii 0.90 (3) 1.92 (3) 2.810 (3) 174 (3)
N1—H2N1⋯O4 0.85 (3) 2.08 (3) 2.934 (3) 175 (2)
C1—H1A⋯O4ii 0.93 2.54 3.440 (3) 164
C2—H2A⋯O1iii 0.93 2.39 3.041 (3) 127
C3—H3A⋯O1iv 0.93 2.31 3.222 (3) 166
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x-1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myasthenic syndrome and multiple sclerosis because by blocking potassium channels it prolongs action potentials thereby increasing transmitter release at the neuromuscular junction (Judge & Bever, (2006); Schwid et al., 1997; Strupp et al., 2004). The structure of 4-aminopyridine has been reported (Chao & Schempp, 1977) as has a redetermination (Anderson et al., 2005). Succinic acid is a dicarboxylic acid and is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly being used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has also been reported (Gopalan et al., 2000; Leviel et al., 1981). As an extension of our systematic study of hydrogen bonding patterns of 4-aminopyridine with carboxylic acids, the title compound (I) has been synthesized and the crystal structure determined.

The asymmetric unit of (I) (Fig. 1) contains a 4-aminopyridinium cation and a succinic acetate anion, indicating that proton transfer occurred during the co-crystallisation experiment. Protonation leads to the widening of C2–N2–C3 angle in the pyridine ring to 120.7 (2)°, compared to 115.25 (13)° in 4-aminopyridine (Anderson et al., 2005). This type of protonation has been observed in various 4-aminopyridine acid complexes (Bhattacharya et al., 1994; Karle et al., 2003). Otherwise, the bond lengths and bond angles in 4-aminopyridinium cation are comparable to the values reported earlier for 4-aminopyridine (Chao & Schempp, 1977; Anderson et al., 2005). The 4-aminopyridine ring is essentially planar with the maximum deviation from planarity being -0.011 (3) Å for atom C5. The bond lengths and bond angles of the succinic acetate are found to have normal values (Gopalan et al., 2000; Leviel et al., 1981).

The crystal packing is consolidated by O—H···O and N—H···O intermolecular hydrogen bonds (Table 1) supported by C—H···O contacts. An intramolecular N—H···O hydrogen bond stabilises the conformation of the molecule. The molecules aggregate to form a 2-D array parallel to the ab-plane (Fig. 2).

Related literature top

For the biological activity of 4-aminopyridine, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004). For the applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999). For related structures, see: Chao & Schempp (1977); Anderson et al. (2005); Bhattacharya et al. (1994); Karle et al. (2003); Gopalan et al. (2000); Leviel et al., (1981). For stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

Equimolar quantities of 4-aminopyridine (0.094 g, 1 mmol) and succinic acid (0.118 g, 1 mmol) were dissolved in ethanol (10 ml) and water (10 ml), respectively. The aqueous solution of succinic acid was added drop wise to the solution of 4-aminopyridine and stirred well for 4 h. The solution is refluxed at 343°K for 6 h. Colourless crystals were harvested after one month of solvent evaporation.

Refinement top

The N-bound H atoms were located from the Fourier map and are allowed to refine freely (N-H = 0.85 - 0.94 (3) Å). The O-bound H atom was located from the Fourier map and fixed in that position, with O—H = 1.09 Å, and allowed to refine with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions, with C—H = 0.93 — 0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates hydrogen bonding.
[Figure 2] Fig. 2. A 2-D supramolecular layer in (I), viewed along the c axis. Dashed lines indicate the hydrogen bonding.
4-Aminopyridinium hydrogen succinate top
Crystal data top
C5H7N2+·C4H5O4F(000) = 448
Mr = 212.21Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1804 reflections
a = 6.5443 (3) Åθ = 3.4–30.1°
b = 22.2867 (11) ŵ = 0.12 mm1
c = 7.1112 (4) ÅT = 100 K
β = 114.587 (4)°Plate, colourless
V = 943.13 (8) Å30.38 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2176 independent reflections
Radiation source: fine-focus sealed tube1483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.956, Tmax = 0.991k = 2828
7174 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0786P)2]
where P = (Fo2 + 2Fc2)/3
2176 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C5H7N2+·C4H5O4V = 943.13 (8) Å3
Mr = 212.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5443 (3) ŵ = 0.12 mm1
b = 22.2867 (11) ÅT = 100 K
c = 7.1112 (4) Å0.38 × 0.14 × 0.08 mm
β = 114.587 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2176 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1483 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.066
7174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
2176 reflectionsΔρmin = 0.46 e Å3
148 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1281 (3)0.19522 (7)0.2994 (3)0.0174 (4)
O20.4204 (3)0.24560 (7)0.2995 (3)0.0153 (4)
O30.4285 (3)0.34855 (7)0.2828 (3)0.0176 (4)
O40.1374 (3)0.40250 (7)0.2633 (3)0.0189 (4)
N10.2764 (4)0.44695 (9)0.2808 (3)0.0171 (5)
N20.4551 (3)0.62442 (9)0.2152 (3)0.0151 (5)
C10.5396 (4)0.52400 (10)0.2605 (4)0.0151 (5)
H1A0.63690.49620.27690.018*
C20.5929 (4)0.58295 (10)0.2401 (4)0.0155 (5)
H2A0.72720.59530.24320.019*
C30.2614 (4)0.60783 (10)0.2064 (4)0.0156 (5)
H3A0.17010.63680.18640.019*
C40.1974 (4)0.54940 (10)0.2261 (4)0.0159 (5)
H4A0.06320.53870.21950.019*
C50.3347 (4)0.50458 (10)0.2570 (4)0.0132 (5)
C60.2223 (4)0.24291 (10)0.3003 (4)0.0124 (5)
C70.1087 (4)0.30270 (9)0.3032 (4)0.0119 (5)
H7A0.20010.32510.17980.014*
H7B0.10020.32570.42200.014*
C80.1262 (4)0.29562 (10)0.3127 (4)0.0124 (5)
H8A0.22300.27860.44580.015*
H8B0.12060.26740.20670.015*
C90.2288 (4)0.35388 (10)0.2832 (4)0.0136 (5)
H1O30.49010.30320.28380.016*
H1N10.378 (4)0.4190 (13)0.292 (4)0.020 (7)*
H1N20.490 (5)0.6636 (14)0.204 (4)0.027 (8)*
H2N10.155 (5)0.4361 (11)0.273 (4)0.013 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0163 (9)0.0058 (8)0.0317 (11)0.0004 (6)0.0114 (8)0.0008 (7)
O20.0120 (8)0.0061 (8)0.0294 (11)0.0011 (6)0.0102 (8)0.0000 (6)
O30.0139 (9)0.0067 (8)0.0366 (12)0.0003 (6)0.0149 (8)0.0014 (7)
O40.0182 (9)0.0057 (8)0.0358 (12)0.0021 (6)0.0141 (8)0.0021 (7)
N10.0141 (10)0.0079 (10)0.0326 (14)0.0014 (8)0.0131 (10)0.0008 (8)
N20.0170 (11)0.0035 (10)0.0235 (13)0.0024 (7)0.0071 (9)0.0001 (8)
C10.0144 (12)0.0104 (12)0.0225 (15)0.0008 (8)0.0096 (11)0.0020 (9)
C20.0142 (12)0.0092 (12)0.0240 (15)0.0000 (8)0.0089 (11)0.0002 (9)
C30.0139 (12)0.0131 (12)0.0204 (14)0.0026 (9)0.0076 (11)0.0010 (10)
C40.0125 (12)0.0111 (12)0.0255 (15)0.0021 (8)0.0093 (11)0.0014 (9)
C50.0147 (11)0.0092 (11)0.0137 (13)0.0011 (8)0.0038 (10)0.0012 (9)
C60.0128 (11)0.0082 (11)0.0162 (14)0.0009 (8)0.0060 (10)0.0000 (9)
C70.0117 (11)0.0067 (11)0.0175 (14)0.0002 (8)0.0063 (10)0.0005 (9)
C80.0115 (11)0.0063 (11)0.0205 (14)0.0005 (8)0.0076 (10)0.0004 (9)
C90.0122 (11)0.0107 (12)0.0195 (14)0.0002 (8)0.0081 (11)0.0001 (9)
Geometric parameters (Å, º) top
O1—C61.230 (3)C1—H1A0.9300
O2—C61.295 (3)C2—H2A0.9300
O3—C91.313 (3)C3—C41.357 (3)
O3—H1O31.0871C3—H3A0.9300
O4—C91.217 (3)C4—C51.420 (3)
N1—C51.331 (3)C4—H4A0.9300
N1—H1N10.94 (3)C6—C71.522 (3)
N1—H2N10.86 (3)C7—C81.519 (3)
N2—C31.347 (3)C7—H7A0.9700
N2—C21.354 (3)C7—H7B0.9700
N2—H1N20.90 (3)C8—C91.516 (3)
C1—C21.352 (3)C8—H8A0.9700
C1—C51.419 (3)C8—H8B0.9700
C9—O3—H1O3116.8N1—C5—C4122.1 (2)
C5—N1—H1N1118.3 (16)C1—C5—C4116.8 (2)
C5—N1—H2N1119.4 (17)O1—C6—O2122.88 (19)
H1N1—N1—H2N1122 (2)O1—C6—C7120.88 (19)
C3—N2—C2120.7 (2)O2—C6—C7116.24 (18)
C3—N2—H1N2118.4 (17)C8—C7—C6112.93 (18)
C2—N2—H1N2120.9 (17)C8—C7—H7A109.0
C2—C1—C5119.9 (2)C6—C7—H7A109.0
C2—C1—H1A120.1C8—C7—H7B109.0
C5—C1—H1A120.1C6—C7—H7B109.0
C1—C2—N2121.4 (2)H7A—C7—H7B107.8
C1—C2—H2A119.3C9—C8—C7113.79 (18)
N2—C2—H2A119.3C9—C8—H8A108.8
N2—C3—C4121.0 (2)C7—C8—H8A108.8
N2—C3—H3A119.5C9—C8—H8B108.8
C4—C3—H3A119.5C7—C8—H8B108.8
C3—C4—C5120.2 (2)H8A—C8—H8B107.7
C3—C4—H4A119.9O4—C9—O3121.5 (2)
C5—C4—H4A119.9O4—C9—C8123.62 (19)
N1—C5—C1121.0 (2)O3—C9—C8114.91 (18)
C5—C1—C2—N20.3 (4)C3—C4—C5—C11.5 (4)
C3—N2—C2—C11.2 (4)O1—C6—C7—C82.1 (3)
C2—N2—C3—C41.3 (4)O2—C6—C7—C8177.7 (2)
N2—C3—C4—C50.1 (4)C6—C7—C8—C9171.3 (2)
C2—C1—C5—N1178.7 (2)C7—C8—C9—O43.3 (3)
C2—C1—C5—C41.6 (4)C7—C8—C9—O3177.5 (2)
C3—C4—C5—N1178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i1.091.402.482 (2)176
N1—H1N1···O3ii0.94 (3)2.00 (3)2.926 (3)168 (3)
N2—H1N2···O1iii0.90 (3)2.59 (3)3.115 (3)118 (3)
N2—H1N2···O2iii0.90 (3)1.92 (3)2.810 (3)174 (3)
N1—H2N1···O40.85 (3)2.08 (3)2.934 (3)175 (2)
C1—H1A···O4ii0.932.543.440 (3)164
C2—H2A···O1iii0.932.393.041 (3)127
C3—H3A···O1iv0.932.313.222 (3)166
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C4H5O4
Mr212.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.5443 (3), 22.2867 (11), 7.1112 (4)
β (°) 114.587 (4)
V3)943.13 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7174, 2176, 1483
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.150, 1.06
No. of reflections2176
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i1.091.402.482 (2)176
N1—H1N1···O3ii0.94 (3)2.00 (3)2.926 (3)168 (3)
N2—H1N2···O1iii0.90 (3)2.59 (3)3.115 (3)118 (3)
N2—H1N2···O2iii0.90 (3)1.92 (3)2.810 (3)174 (3)
N1—H2N1···O40.85 (3)2.08 (3)2.934 (3)175 (2)
C1—H1A···O4ii0.932.543.440 (3)164
C2—H2A···O1iii0.932.393.041 (3)127
C3—H3A···O1iv0.932.313.222 (3)166
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No.1001/PFIZIK/811012.

References

First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531–537.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106.  Google Scholar
First citationJudge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185–2189.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352–361.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545–552.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o765-o766
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds