organic compounds
4-Aminopyridinium hydrogen succinate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620015, India
*Correspondence e-mail: hkfun@usm.my
In the title salt, C5H7N2+·C4H5O4−, the comprises an aminopyridinium cation and a hydrogen succinate anion as protonation of the aromatic N atom of the 4-aminopyridine molecule has occurred. The crystal packing is stabilized by intermolecular O—H⋯O and N—H⋯O hydrogen bonds that lead to a two-dimensional array. Short C—H⋯O contacts are also present.
Related literature
For the biological activity of 4-aminopyridine, see: Judge & Bever (2006); Schwid et al. (1997); Strupp et al. (2004). For the applications of succinic acid, see: Sauer et al. (2008); Song & Lee (2006); Zeikus et al. (1999). For related structures, see: Chao & Schempp (1977); Anderson et al. (2005); Bhattacharya et al. (1994); Karle et al. (2003); Gopalan et al. (2000); Leviel et al., (1981). For stability of the temperature controller, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809006990/tk2378sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006990/tk2378Isup2.hkl
Equimolar quantities of 4-aminopyridine (0.094 g, 1 mmol) and succinic acid (0.118 g, 1 mmol) were dissolved in ethanol (10 ml) and water (10 ml), respectively. The aqueous solution of succinic acid was added drop wise to the solution of 4-aminopyridine and stirred well for 4 h. The solution is refluxed at 343°K for 6 h. Colourless crystals were harvested after one month of solvent evaporation.
The N-bound H atoms were located from the Fourier map and are allowed to refine freely (N-H = 0.85 - 0.94 (3) Å). The O-bound H atom was located from the Fourier map and fixed in that position, with O—H = 1.09 Å, and allowed to refine with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions, with C—H = 0.93 — 0.97 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates hydrogen bonding. | |
Fig. 2. A 2-D supramolecular layer in (I), viewed along the c axis. Dashed lines indicate the hydrogen bonding. |
C5H7N2+·C4H5O4− | F(000) = 448 |
Mr = 212.21 | Dx = 1.494 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1804 reflections |
a = 6.5443 (3) Å | θ = 3.4–30.1° |
b = 22.2867 (11) Å | µ = 0.12 mm−1 |
c = 7.1112 (4) Å | T = 100 K |
β = 114.587 (4)° | Plate, colourless |
V = 943.13 (8) Å3 | 0.38 × 0.14 × 0.08 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 2176 independent reflections |
Radiation source: fine-focus sealed tube | 1483 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −8→8 |
Tmin = 0.956, Tmax = 0.991 | k = −28→28 |
7174 measured reflections | l = −9→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0786P)2] where P = (Fo2 + 2Fc2)/3 |
2176 reflections | (Δ/σ)max = 0.001 |
148 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
C5H7N2+·C4H5O4− | V = 943.13 (8) Å3 |
Mr = 212.21 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.5443 (3) Å | µ = 0.12 mm−1 |
b = 22.2867 (11) Å | T = 100 K |
c = 7.1112 (4) Å | 0.38 × 0.14 × 0.08 mm |
β = 114.587 (4)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2176 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1483 reflections with I > 2σ(I) |
Tmin = 0.956, Tmax = 0.991 | Rint = 0.066 |
7174 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.44 e Å−3 |
2176 reflections | Δρmin = −0.46 e Å−3 |
148 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.1281 (3) | 0.19522 (7) | 0.2994 (3) | 0.0174 (4) | |
O2 | −0.4204 (3) | 0.24560 (7) | 0.2995 (3) | 0.0153 (4) | |
O3 | 0.4285 (3) | 0.34855 (7) | 0.2828 (3) | 0.0176 (4) | |
O4 | 0.1374 (3) | 0.40250 (7) | 0.2633 (3) | 0.0189 (4) | |
N1 | −0.2764 (4) | 0.44695 (9) | 0.2808 (3) | 0.0171 (5) | |
N2 | −0.4551 (3) | 0.62442 (9) | 0.2152 (3) | 0.0151 (5) | |
C1 | −0.5396 (4) | 0.52400 (10) | 0.2605 (4) | 0.0151 (5) | |
H1A | −0.6369 | 0.4962 | 0.2769 | 0.018* | |
C2 | −0.5929 (4) | 0.58295 (10) | 0.2401 (4) | 0.0155 (5) | |
H2A | −0.7272 | 0.5953 | 0.2432 | 0.019* | |
C3 | −0.2614 (4) | 0.60783 (10) | 0.2064 (4) | 0.0156 (5) | |
H3A | −0.1701 | 0.6368 | 0.1864 | 0.019* | |
C4 | −0.1974 (4) | 0.54940 (10) | 0.2261 (4) | 0.0159 (5) | |
H4A | −0.0632 | 0.5387 | 0.2195 | 0.019* | |
C5 | −0.3347 (4) | 0.50458 (10) | 0.2570 (4) | 0.0132 (5) | |
C6 | −0.2223 (4) | 0.24291 (10) | 0.3003 (4) | 0.0124 (5) | |
C7 | −0.1087 (4) | 0.30270 (9) | 0.3032 (4) | 0.0119 (5) | |
H7A | −0.2001 | 0.3251 | 0.1798 | 0.014* | |
H7B | −0.1002 | 0.3257 | 0.4220 | 0.014* | |
C8 | 0.1262 (4) | 0.29562 (10) | 0.3127 (4) | 0.0124 (5) | |
H8A | 0.2230 | 0.2786 | 0.4458 | 0.015* | |
H8B | 0.1206 | 0.2674 | 0.2067 | 0.015* | |
C9 | 0.2288 (4) | 0.35388 (10) | 0.2832 (4) | 0.0136 (5) | |
H1O3 | 0.4901 | 0.3032 | 0.2838 | 0.016* | |
H1N1 | −0.378 (4) | 0.4190 (13) | 0.292 (4) | 0.020 (7)* | |
H1N2 | −0.490 (5) | 0.6636 (14) | 0.204 (4) | 0.027 (8)* | |
H2N1 | −0.155 (5) | 0.4361 (11) | 0.273 (4) | 0.013 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0163 (9) | 0.0058 (8) | 0.0317 (11) | −0.0004 (6) | 0.0114 (8) | −0.0008 (7) |
O2 | 0.0120 (8) | 0.0061 (8) | 0.0294 (11) | −0.0011 (6) | 0.0102 (8) | 0.0000 (6) |
O3 | 0.0139 (9) | 0.0067 (8) | 0.0366 (12) | 0.0003 (6) | 0.0149 (8) | 0.0014 (7) |
O4 | 0.0182 (9) | 0.0057 (8) | 0.0358 (12) | 0.0021 (6) | 0.0141 (8) | 0.0021 (7) |
N1 | 0.0141 (10) | 0.0079 (10) | 0.0326 (14) | 0.0014 (8) | 0.0131 (10) | 0.0008 (8) |
N2 | 0.0170 (11) | 0.0035 (10) | 0.0235 (13) | 0.0024 (7) | 0.0071 (9) | 0.0001 (8) |
C1 | 0.0144 (12) | 0.0104 (12) | 0.0225 (15) | −0.0008 (8) | 0.0096 (11) | 0.0020 (9) |
C2 | 0.0142 (12) | 0.0092 (12) | 0.0240 (15) | 0.0000 (8) | 0.0089 (11) | 0.0002 (9) |
C3 | 0.0139 (12) | 0.0131 (12) | 0.0204 (14) | −0.0026 (9) | 0.0076 (11) | 0.0010 (10) |
C4 | 0.0125 (12) | 0.0111 (12) | 0.0255 (15) | −0.0021 (8) | 0.0093 (11) | −0.0014 (9) |
C5 | 0.0147 (11) | 0.0092 (11) | 0.0137 (13) | −0.0011 (8) | 0.0038 (10) | −0.0012 (9) |
C6 | 0.0128 (11) | 0.0082 (11) | 0.0162 (14) | −0.0009 (8) | 0.0060 (10) | 0.0000 (9) |
C7 | 0.0117 (11) | 0.0067 (11) | 0.0175 (14) | 0.0002 (8) | 0.0063 (10) | 0.0005 (9) |
C8 | 0.0115 (11) | 0.0063 (11) | 0.0205 (14) | −0.0005 (8) | 0.0076 (10) | 0.0004 (9) |
C9 | 0.0122 (11) | 0.0107 (12) | 0.0195 (14) | −0.0002 (8) | 0.0081 (11) | −0.0001 (9) |
O1—C6 | 1.230 (3) | C1—H1A | 0.9300 |
O2—C6 | 1.295 (3) | C2—H2A | 0.9300 |
O3—C9 | 1.313 (3) | C3—C4 | 1.357 (3) |
O3—H1O3 | 1.0871 | C3—H3A | 0.9300 |
O4—C9 | 1.217 (3) | C4—C5 | 1.420 (3) |
N1—C5 | 1.331 (3) | C4—H4A | 0.9300 |
N1—H1N1 | 0.94 (3) | C6—C7 | 1.522 (3) |
N1—H2N1 | 0.86 (3) | C7—C8 | 1.519 (3) |
N2—C3 | 1.347 (3) | C7—H7A | 0.9700 |
N2—C2 | 1.354 (3) | C7—H7B | 0.9700 |
N2—H1N2 | 0.90 (3) | C8—C9 | 1.516 (3) |
C1—C2 | 1.352 (3) | C8—H8A | 0.9700 |
C1—C5 | 1.419 (3) | C8—H8B | 0.9700 |
C9—O3—H1O3 | 116.8 | N1—C5—C4 | 122.1 (2) |
C5—N1—H1N1 | 118.3 (16) | C1—C5—C4 | 116.8 (2) |
C5—N1—H2N1 | 119.4 (17) | O1—C6—O2 | 122.88 (19) |
H1N1—N1—H2N1 | 122 (2) | O1—C6—C7 | 120.88 (19) |
C3—N2—C2 | 120.7 (2) | O2—C6—C7 | 116.24 (18) |
C3—N2—H1N2 | 118.4 (17) | C8—C7—C6 | 112.93 (18) |
C2—N2—H1N2 | 120.9 (17) | C8—C7—H7A | 109.0 |
C2—C1—C5 | 119.9 (2) | C6—C7—H7A | 109.0 |
C2—C1—H1A | 120.1 | C8—C7—H7B | 109.0 |
C5—C1—H1A | 120.1 | C6—C7—H7B | 109.0 |
C1—C2—N2 | 121.4 (2) | H7A—C7—H7B | 107.8 |
C1—C2—H2A | 119.3 | C9—C8—C7 | 113.79 (18) |
N2—C2—H2A | 119.3 | C9—C8—H8A | 108.8 |
N2—C3—C4 | 121.0 (2) | C7—C8—H8A | 108.8 |
N2—C3—H3A | 119.5 | C9—C8—H8B | 108.8 |
C4—C3—H3A | 119.5 | C7—C8—H8B | 108.8 |
C3—C4—C5 | 120.2 (2) | H8A—C8—H8B | 107.7 |
C3—C4—H4A | 119.9 | O4—C9—O3 | 121.5 (2) |
C5—C4—H4A | 119.9 | O4—C9—C8 | 123.62 (19) |
N1—C5—C1 | 121.0 (2) | O3—C9—C8 | 114.91 (18) |
C5—C1—C2—N2 | 0.3 (4) | C3—C4—C5—C1 | 1.5 (4) |
C3—N2—C2—C1 | 1.2 (4) | O1—C6—C7—C8 | −2.1 (3) |
C2—N2—C3—C4 | −1.3 (4) | O2—C6—C7—C8 | 177.7 (2) |
N2—C3—C4—C5 | −0.1 (4) | C6—C7—C8—C9 | 171.3 (2) |
C2—C1—C5—N1 | 178.7 (2) | C7—C8—C9—O4 | 3.3 (3) |
C2—C1—C5—C4 | −1.6 (4) | C7—C8—C9—O3 | −177.5 (2) |
C3—C4—C5—N1 | −178.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2i | 1.09 | 1.40 | 2.482 (2) | 176 |
N1—H1N1···O3ii | 0.94 (3) | 2.00 (3) | 2.926 (3) | 168 (3) |
N2—H1N2···O1iii | 0.90 (3) | 2.59 (3) | 3.115 (3) | 118 (3) |
N2—H1N2···O2iii | 0.90 (3) | 1.92 (3) | 2.810 (3) | 174 (3) |
N1—H2N1···O4 | 0.85 (3) | 2.08 (3) | 2.934 (3) | 175 (2) |
C1—H1A···O4ii | 0.93 | 2.54 | 3.440 (3) | 164 |
C2—H2A···O1iii | 0.93 | 2.39 | 3.041 (3) | 127 |
C3—H3A···O1iv | 0.93 | 2.31 | 3.222 (3) | 166 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x−1, y+1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H7N2+·C4H5O4− |
Mr | 212.21 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.5443 (3), 22.2867 (11), 7.1112 (4) |
β (°) | 114.587 (4) |
V (Å3) | 943.13 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.38 × 0.14 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.956, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7174, 2176, 1483 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.150, 1.06 |
No. of reflections | 2176 |
No. of parameters | 148 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.46 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O2i | 1.09 | 1.40 | 2.482 (2) | 176 |
N1—H1N1···O3ii | 0.94 (3) | 2.00 (3) | 2.926 (3) | 168 (3) |
N2—H1N2···O1iii | 0.90 (3) | 2.59 (3) | 3.115 (3) | 118 (3) |
N2—H1N2···O2iii | 0.90 (3) | 1.92 (3) | 2.810 (3) | 174 (3) |
N1—H2N1···O4 | 0.85 (3) | 2.08 (3) | 2.934 (3) | 175 (2) |
C1—H1A···O4ii | 0.93 | 2.54 | 3.440 (3) | 164 |
C2—H2A···O1iii | 0.93 | 2.39 | 3.041 (3) | 127 |
C3—H3A···O1iv | 0.93 | 2.31 | 3.222 (3) | 166 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x−1, y+1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2. |
Footnotes
‡Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.
Acknowledgements
HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No.1001/PFIZIK/811012.
References
Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531–537. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gopalan, R. S., Kumaradhas, P., Kulkarani, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106. Google Scholar
Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259. Web of Science CrossRef PubMed CAS Google Scholar
Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749. Web of Science CSD CrossRef CAS Google Scholar
Leviel, J.-L., Auvert, G. & Savariault, J.-M. (1981). Acta Cryst. B37, 2185–2189. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108. Web of Science CrossRef PubMed CAS Google Scholar
Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, H. & Lee, S. Y. (2006). Enzyme Microb. Technol. 39, 352–361. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625. Web of Science CrossRef PubMed CAS Google Scholar
Zeikus, J. G., Jain, M. K. & Elankovan, P. (1999). Appl. Microbiol. Biotechnol. 51, 545–552. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myasthenic syndrome and multiple sclerosis because by blocking potassium channels it prolongs action potentials thereby increasing transmitter release at the neuromuscular junction (Judge & Bever, (2006); Schwid et al., 1997; Strupp et al., 2004). The structure of 4-aminopyridine has been reported (Chao & Schempp, 1977) as has a redetermination (Anderson et al., 2005). Succinic acid is a dicarboxylic acid and is a precursor for many chemicals of industrial importance (Zeikus et al., 1999; Song & Lee, 2006). Succinic acid derivatives are mostly being used in chemicals, food and pharmaceuticals (Sauer et al., 2008). The crystal structure of succinic acid has also been reported (Gopalan et al., 2000; Leviel et al., 1981). As an extension of our systematic study of hydrogen bonding patterns of 4-aminopyridine with carboxylic acids, the title compound (I) has been synthesized and the crystal structure determined.
The asymmetric unit of (I) (Fig. 1) contains a 4-aminopyridinium cation and a succinic acetate anion, indicating that proton transfer occurred during the co-crystallisation experiment. Protonation leads to the widening of C2–N2–C3 angle in the pyridine ring to 120.7 (2)°, compared to 115.25 (13)° in 4-aminopyridine (Anderson et al., 2005). This type of protonation has been observed in various 4-aminopyridine acid complexes (Bhattacharya et al., 1994; Karle et al., 2003). Otherwise, the bond lengths and bond angles in 4-aminopyridinium cation are comparable to the values reported earlier for 4-aminopyridine (Chao & Schempp, 1977; Anderson et al., 2005). The 4-aminopyridine ring is essentially planar with the maximum deviation from planarity being -0.011 (3) Å for atom C5. The bond lengths and bond angles of the succinic acetate are found to have normal values (Gopalan et al., 2000; Leviel et al., 1981).
The crystal packing is consolidated by O—H···O and N—H···O intermolecular hydrogen bonds (Table 1) supported by C—H···O contacts. An intramolecular N—H···O hydrogen bond stabilises the conformation of the molecule. The molecules aggregate to form a 2-D array parallel to the ab-plane (Fig. 2).