organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(3,5-Di-tert-butyl-4-hy­droxy­benz­yl)­sulfan­yl]-N′-iso­propyl­ideneaceto­hydrazide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 February 2009; accepted 4 March 2009; online 11 March 2009)

The title compound, C20H32N2O2S, the condensation product of a thio­acetohydrazine and acetone, has a two-coordinate S atom and the angle at this atom is 100.7 (1)°. The (CH3)C=N—NH—C(O)– substituent engages in N—H⋯O hydrogen-bonding inter­actions with the substituent of an adjacent mol­ecule across a center of inversion, generating a dimeric structure.

Related literature

There are several structural studies of (CH3)C=N–NH–C(O)–X compounds; for N-acetyl-N′-isopropyl­idenehydrazine, see: Khusainova et al. (2004[Khusainova, N. G., Mostovaya, O. M., Azancheev, N. M., Litvinov, I. A., Krivolapov, B. D. & Cherkasov, R. A. (2004). Mendeleev Commun. 14, 212-214.]). For the synthesis of the thio­acetohydrazine reactant, see: MacLeay & Meyers (1989[MacLeay, R. E. & Meyers, T. D. (1989). Eur. Patent EP 303986 A2 19890222.]); Myers & MacLeay (1989[Myers, T. D. & MacLeay, R. E. (1989). Eur. Patent EP 306729 A1 19890315.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32N2O2S

  • Mr = 364.54

  • Monoclinic, C 2/c

  • a = 30.8643 (10) Å

  • b = 10.0128 (3) Å

  • c = 13.9596 (5) Å

  • β = 96.227 (2)°

  • V = 4288.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.984

  • 14652 measured reflections

  • 4886 independent reflections

  • 3240 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.05

  • 4886 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.10 2.940 (2) 159
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

There are several structural studies of (CH3)C=N–NH–C(O)–X compounds; for N-acetyl-N'-isopropylidenehydrazine, see: Khusainova et al. (2004). For the synthesis of the thioacetohydrazine reactant, see: MacLeay & Meyers (1989); Myers & MacLeay (1989).

Experimental top

2-(3,5-Di-tert-butyl-4-hydroxybenzylthio)acetohydrazine (0.5 g, 1.54 mmol) and acetone (10 ml) were heated for 6 h; several drops of acetic acid were added to the reaction. The solvent was removed and the product recrystallized from hexane.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with U(H) set to 1.2–1.5U(C). The oxygen- and nitrogen-bound H-atoms were similarly treated (O–H 0.84 and N–H 0.88 Å).

The hydroxy H-atom does not form a hydrogen bond; it is probably disordered over several positions. In one position, it is less than 2 Å from a hydrogen atom of the C14 methyl group. The two tert-butyl groups are probably also disordered, but the disorder could not be resolved into multiple positions.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H32N2O2S at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
2-[(3,5-Di-tert-butyl-4-hydroxybenzyl)sulfanyl]-N'- isopropylideneacetohydrazide top
Crystal data top
C20H32N2O2SF(000) = 1584
Mr = 364.54Dx = 1.129 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1963 reflections
a = 30.8643 (10) Åθ = 2.6–26.3°
b = 10.0128 (3) ŵ = 0.17 mm1
c = 13.9596 (5) ÅT = 100 K
β = 96.227 (2)°Block, colorless
V = 4288.6 (2) Å30.25 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
4886 independent reflections
Radiation source: fine-focus sealed tube3240 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3940
Tmin = 0.960, Tmax = 0.984k = 1313
14652 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.8959P]
where P = (Fo2 + 2Fc2)/3
4886 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H32N2O2SV = 4288.6 (2) Å3
Mr = 364.54Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.8643 (10) ŵ = 0.17 mm1
b = 10.0128 (3) ÅT = 100 K
c = 13.9596 (5) Å0.25 × 0.15 × 0.10 mm
β = 96.227 (2)°
Data collection top
Bruker SMART APEX
diffractometer
4886 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3240 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.984Rint = 0.052
14652 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
4886 reflectionsΔρmin = 0.28 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.394869 (18)0.18708 (5)0.52819 (4)0.02810 (16)
O10.32415 (5)0.04431 (14)0.08151 (10)0.0287 (4)
H1O0.34790.03040.05910.066 (10)*
O20.45752 (5)0.41852 (14)0.43360 (10)0.0284 (4)
N10.49822 (5)0.32105 (16)0.55791 (12)0.0228 (4)
H10.51090.39700.57620.033 (6)*
N20.51037 (5)0.20268 (16)0.60634 (12)0.0233 (4)
C10.34695 (6)0.22530 (19)0.35011 (14)0.0212 (4)
C20.31851 (6)0.11801 (18)0.33503 (15)0.0208 (4)
H20.30450.08510.38760.025*
C30.30992 (6)0.05737 (18)0.24556 (15)0.0205 (4)
C40.33196 (6)0.10754 (18)0.17019 (14)0.0207 (4)
C50.35919 (6)0.21967 (19)0.18074 (14)0.0206 (4)
C60.36638 (6)0.27540 (19)0.27299 (14)0.0213 (4)
H60.38530.35020.28300.026*
C70.27708 (7)0.0579 (2)0.22932 (15)0.0257 (5)
C80.25474 (7)0.0877 (2)0.31963 (16)0.0326 (5)
H8A0.23940.00770.33830.049*
H8B0.27670.11380.37230.049*
H8C0.23380.16060.30610.049*
C90.30019 (9)0.1865 (2)0.2033 (2)0.0425 (6)
H9A0.27900.25940.19460.064*
H9B0.32290.20930.25540.064*
H9C0.31350.17290.14350.064*
C100.24093 (7)0.0210 (2)0.14912 (17)0.0360 (6)
H10A0.22600.06000.16740.054*
H10B0.21990.09450.13980.054*
H10C0.25380.00490.08900.054*
C110.38057 (7)0.2813 (2)0.09618 (16)0.0284 (5)
C120.40558 (9)0.4089 (2)0.12623 (17)0.0404 (6)
H12A0.42930.38790.17640.061*
H12B0.38580.47340.15130.061*
H12C0.41770.44720.07030.061*
C130.34528 (10)0.3206 (3)0.01478 (18)0.0480 (7)
H13A0.32550.38610.03900.072*
H13B0.32870.24100.00780.072*
H13C0.35910.35960.03870.072*
C140.41348 (10)0.1852 (2)0.0594 (2)0.0544 (8)
H14A0.43420.15580.11350.082*
H14B0.42920.23070.01160.082*
H14C0.39810.10750.02970.082*
C150.35698 (7)0.2863 (2)0.44856 (14)0.0242 (5)
H15A0.32950.29680.47830.029*
H15B0.36950.37640.44170.029*
C160.44235 (7)0.18946 (19)0.46239 (16)0.0258 (5)
H16A0.46150.11280.48230.031*
H16B0.43320.18160.39240.031*
C170.46677 (6)0.3174 (2)0.48258 (14)0.0221 (4)
C180.54119 (7)0.2084 (2)0.67522 (15)0.0252 (5)
C190.55491 (8)0.0790 (2)0.72261 (16)0.0328 (5)
H19A0.53610.00700.69460.049*
H19B0.55240.08520.79190.049*
H19C0.58520.06000.71240.049*
C200.56467 (8)0.3315 (2)0.71190 (17)0.0376 (6)
H20A0.54350.40230.72030.056*
H20B0.58440.36070.66550.056*
H20C0.58160.31240.77390.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0292 (3)0.0299 (3)0.0231 (3)0.0090 (2)0.0063 (2)0.0075 (2)
O10.0321 (9)0.0280 (8)0.0264 (9)0.0086 (7)0.0057 (7)0.0100 (6)
O20.0270 (8)0.0279 (8)0.0286 (9)0.0029 (6)0.0044 (7)0.0037 (6)
N10.0219 (9)0.0237 (8)0.0219 (9)0.0034 (7)0.0018 (7)0.0016 (7)
N20.0237 (9)0.0257 (9)0.0203 (9)0.0017 (7)0.0019 (7)0.0006 (7)
C10.0188 (10)0.0232 (9)0.0207 (11)0.0016 (8)0.0024 (8)0.0014 (8)
C20.0174 (10)0.0224 (9)0.0223 (11)0.0006 (8)0.0009 (8)0.0044 (8)
C30.0170 (10)0.0193 (9)0.0243 (11)0.0003 (8)0.0015 (8)0.0014 (8)
C40.0200 (10)0.0199 (9)0.0214 (11)0.0004 (8)0.0012 (8)0.0024 (8)
C50.0208 (10)0.0201 (9)0.0208 (11)0.0006 (8)0.0015 (8)0.0007 (8)
C60.0190 (10)0.0193 (9)0.0244 (11)0.0026 (8)0.0031 (8)0.0013 (8)
C70.0237 (11)0.0250 (10)0.0282 (12)0.0071 (9)0.0023 (9)0.0018 (9)
C80.0303 (12)0.0305 (11)0.0373 (14)0.0113 (10)0.0048 (10)0.0031 (10)
C90.0496 (16)0.0223 (11)0.0580 (18)0.0087 (11)0.0172 (13)0.0045 (11)
C100.0269 (12)0.0433 (13)0.0359 (14)0.0155 (11)0.0046 (10)0.0016 (11)
C110.0367 (13)0.0260 (11)0.0232 (12)0.0095 (9)0.0066 (10)0.0000 (9)
C120.0553 (16)0.0360 (13)0.0310 (14)0.0208 (12)0.0096 (12)0.0026 (10)
C130.0673 (19)0.0478 (15)0.0261 (14)0.0202 (14)0.0072 (13)0.0108 (11)
C140.0605 (18)0.0398 (14)0.071 (2)0.0102 (13)0.0424 (16)0.0037 (14)
C150.0231 (11)0.0274 (10)0.0214 (11)0.0001 (9)0.0013 (9)0.0000 (8)
C160.0252 (11)0.0233 (10)0.0270 (12)0.0028 (9)0.0065 (9)0.0036 (9)
C170.0181 (10)0.0275 (10)0.0207 (11)0.0004 (8)0.0024 (8)0.0024 (9)
C180.0276 (11)0.0279 (11)0.0199 (11)0.0001 (9)0.0018 (9)0.0020 (8)
C190.0395 (13)0.0323 (12)0.0253 (13)0.0048 (10)0.0031 (10)0.0029 (9)
C200.0441 (14)0.0353 (12)0.0294 (13)0.0072 (11)0.0145 (11)0.0031 (10)
Geometric parameters (Å, º) top
S1—C161.812 (2)C10—H10A0.9800
S1—C151.819 (2)C10—H10B0.9800
O1—C41.388 (2)C10—H10C0.9800
O1—H1O0.8400C11—C141.528 (3)
O2—C171.237 (2)C11—C121.527 (3)
N1—C171.352 (2)C11—C131.537 (3)
N1—N21.396 (2)C12—H12A0.9800
N1—H10.8800C12—H12B0.9800
N2—C181.278 (3)C12—H12C0.9800
C1—C61.382 (3)C13—H13A0.9800
C1—C21.389 (3)C13—H13B0.9800
C1—C151.505 (3)C13—H13C0.9800
C2—C31.388 (3)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.406 (3)C14—H14C0.9800
C3—C71.536 (3)C15—H15A0.9900
C4—C51.401 (3)C15—H15B0.9900
C5—C61.399 (3)C16—C171.498 (3)
C5—C111.542 (3)C16—H16A0.9900
C6—H60.9500C16—H16B0.9900
C7—C81.531 (3)C18—C201.493 (3)
C7—C91.535 (3)C18—C191.495 (3)
C7—C101.537 (3)C19—H19A0.9800
C8—H8A0.9800C19—H19B0.9800
C8—H8B0.9800C19—H19C0.9800
C8—H8C0.9800C20—H20A0.9800
C9—H9A0.9800C20—H20B0.9800
C9—H9B0.9800C20—H20C0.9800
C9—H9C0.9800
C16—S1—C15100.65 (10)C14—C11—C5111.09 (18)
C4—O1—H1O109.5C12—C11—C5111.70 (17)
C17—N1—N2119.11 (16)C13—C11—C5109.91 (19)
C17—N1—H1120.4C11—C12—H12A109.5
N2—N1—H1120.4C11—C12—H12B109.5
C18—N2—N1117.74 (17)H12A—C12—H12B109.5
C6—C1—C2118.89 (18)C11—C12—H12C109.5
C6—C1—C15120.02 (18)H12A—C12—H12C109.5
C2—C1—C15121.09 (18)H12B—C12—H12C109.5
C3—C2—C1122.04 (19)C11—C13—H13A109.5
C3—C2—H2119.0C11—C13—H13B109.5
C1—C2—H2119.0H13A—C13—H13B109.5
C2—C3—C4117.15 (17)C11—C13—H13C109.5
C2—C3—C7121.32 (18)H13A—C13—H13C109.5
C4—C3—C7121.52 (17)H13B—C13—H13C109.5
O1—C4—C5120.24 (17)C11—C14—H14A109.5
O1—C4—C3116.94 (17)C11—C14—H14B109.5
C5—C4—C3122.76 (18)H14A—C14—H14B109.5
C6—C5—C4116.74 (18)C11—C14—H14C109.5
C6—C5—C11120.44 (17)H14A—C14—H14C109.5
C4—C5—C11122.82 (17)H14B—C14—H14C109.5
C1—C6—C5122.24 (18)C1—C15—S1113.01 (14)
C1—C6—H6118.9C1—C15—H15A109.0
C5—C6—H6118.9S1—C15—H15A109.0
C8—C7—C9107.06 (18)C1—C15—H15B109.0
C8—C7—C3111.95 (17)S1—C15—H15B109.0
C9—C7—C3110.44 (17)H15A—C15—H15B107.8
C8—C7—C10106.88 (18)C17—C16—S1109.51 (14)
C9—C7—C10110.41 (19)C17—C16—H16A109.8
C3—C7—C10110.01 (17)S1—C16—H16A109.8
C7—C8—H8A109.5C17—C16—H16B109.8
C7—C8—H8B109.5S1—C16—H16B109.8
H8A—C8—H8B109.5H16A—C16—H16B108.2
C7—C8—H8C109.5O2—C17—N1120.74 (18)
H8A—C8—H8C109.5O2—C17—C16120.97 (18)
H8B—C8—H8C109.5N1—C17—C16118.26 (18)
C7—C9—H9A109.5N2—C18—C20126.07 (19)
C7—C9—H9B109.5N2—C18—C19116.51 (19)
H9A—C9—H9B109.5C20—C18—C19117.41 (19)
C7—C9—H9C109.5C18—C19—H19A109.5
H9A—C9—H9C109.5C18—C19—H19B109.5
H9B—C9—H9C109.5H19A—C19—H19B109.5
C7—C10—H10A109.5C18—C19—H19C109.5
C7—C10—H10B109.5H19A—C19—H19C109.5
H10A—C10—H10B109.5H19B—C19—H19C109.5
C7—C10—H10C109.5C18—C20—H20A109.5
H10A—C10—H10C109.5C18—C20—H20B109.5
H10B—C10—H10C109.5H20A—C20—H20B109.5
C14—C11—C12106.5 (2)C18—C20—H20C109.5
C14—C11—C13110.9 (2)H20A—C20—H20C109.5
C12—C11—C13106.61 (18)H20B—C20—H20C109.5
C17—N1—N2—C18177.73 (18)C4—C3—C7—C965.2 (3)
C6—C1—C2—C31.8 (3)C2—C3—C7—C10122.0 (2)
C15—C1—C2—C3177.81 (18)C4—C3—C7—C1056.9 (2)
C1—C2—C3—C41.2 (3)C6—C5—C11—C14114.5 (2)
C1—C2—C3—C7177.73 (18)C4—C5—C11—C1465.8 (3)
C2—C3—C4—O1178.34 (17)C6—C5—C11—C124.3 (3)
C7—C3—C4—O12.8 (3)C4—C5—C11—C12175.47 (19)
C2—C3—C4—C54.5 (3)C6—C5—C11—C13122.4 (2)
C7—C3—C4—C5174.38 (18)C4—C5—C11—C1357.3 (3)
O1—C4—C5—C6178.28 (17)C6—C1—C15—S1102.63 (19)
C3—C4—C5—C64.7 (3)C2—C1—C15—S177.0 (2)
O1—C4—C5—C111.9 (3)C16—S1—C15—C161.45 (16)
C3—C4—C5—C11175.14 (19)C15—S1—C16—C1781.49 (15)
C2—C1—C6—C51.6 (3)N2—N1—C17—O2174.54 (18)
C15—C1—C6—C5178.00 (18)N2—N1—C17—C167.7 (3)
C4—C5—C6—C11.5 (3)S1—C16—C17—O287.7 (2)
C11—C5—C6—C1178.29 (18)S1—C16—C17—N189.99 (19)
C2—C3—C7—C83.3 (3)N1—N2—C18—C202.5 (3)
C4—C3—C7—C8175.55 (18)N1—N2—C18—C19177.17 (17)
C2—C3—C7—C9115.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.102.940 (2)159
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H32N2O2S
Mr364.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)30.8643 (10), 10.0128 (3), 13.9596 (5)
β (°) 96.227 (2)
V3)4288.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
14652, 4886, 3240
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.05
No. of reflections4886
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.102.940 (2)159
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhusainova, N. G., Mostovaya, O. M., Azancheev, N. M., Litvinov, I. A., Krivolapov, B. D. & Cherkasov, R. A. (2004). Mendeleev Commun. 14, 212–214.  Web of Science CSD CrossRef Google Scholar
First citationMacLeay, R. E. & Meyers, T. D. (1989). Eur. Patent EP 303986 A2 19890222.  Google Scholar
First citationMyers, T. D. & MacLeay, R. E. (1989). Eur. Patent EP 306729 A1 19890315.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds