metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Low-temperature rerefinement of non­merohedrally twinned tripyridinium bis­­[tetra­bromidoferrate(III)] bromide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 February 2009; accepted 26 February 2009; online 14 March 2009)

The asymmetric unit of the title double salt, (C5H6N)3[FeBr4]2Br, consists of three pyridinium cations, two tetra­hedral bromidoferrate(III) anions and a bromide anion. The three cations each form one N—H⋯Br hydrogen bond to the bromide anion. The crystal under investigation was a non-merohedral twin, with a portion of 22% for the minor twin component.

Related literature

The authors of the original room-temperature study noted twinning but the refinement program then could not take this into consideration; see: Lowe et al. (1994[Lowe, C. B., Schultz, A. J., Shaviv, R. & Carlin, R. L. (1994). Inorg. Chem. 33, 3051-3054.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N)3[FeBr4]2Br

  • Mr = 1071.21

  • Monoclinic, P 21

  • a = 7.5602 (1) Å

  • b = 14.0125 (2) Å

  • c = 13.5609 (2) Å

  • β = 95.172 (1)°

  • V = 1430.76 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.59 mm−1

  • T = 123 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.098, Tmax = 0.154

  • 13428 measured reflections

  • 6460 independent reflections

  • 6006 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 1.07

  • 6460 reflections

  • 263 parameters

  • 109 restraints

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −1.71 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3046 Friedel pairs

  • Flack parameter: 0.10 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br9 0.88 2.35 3.202 (9) 163
N2—H2⋯Br9 0.88 2.59 3.292 (8) 137
N3—H3⋯Br9 0.88 2.52 3.279 (7) 146

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The authors of the original room-temperature study noted twinning but the refinement program then could not take this into consideration; see: Lowe et al. (1994).

Experimental top

The crystals were provided by Dr. Nasser Safari of Shahid Beheshti University. Pyridine (2.2 ml, 25 mmol) was added to a solution of ferric bromide (1.25 g, 4.23 mmol) dissolved in a mixture of 1.2 M hydrobromic acid and 2.4 M acetic acid (20 ml). The red solution was set aside for two weeks, after which crystals separated out.

Refinement top

The refinement initally converged to an R1 value of 0.088, but there were large peaks/deep holes. The crystal is in fact a nonmerohedral twin. The law, as given by PLATON (Spek, 2003), is (-1 0 0, 0 - 1 0, 0.323 0 1). The refinement, with an approximate twin component of 22%, halved the R1 index. The twinning affected the anisotropic temperature factors of the carbon and nitrogen atoms; these were restrained to be nearly isotropic.

Carbon- and nitrogen-bound H-atoms were placed in calculated positions (C–H 0.95, N–H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N).

The final difference Fourier map had large peaks/holes in the vicinity of the bromide atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C5H6N]3[FeBr4]2[Br].
tripyridinium bis[tetrabromidoferrate(III)] bromide top
Crystal data top
(C5H6N)3[FeBr4]2BrF(000) = 992
Mr = 1071.21Dx = 2.487 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8983 reflections
a = 7.5602 (1) Åθ = 2.7–28.3°
b = 14.0125 (2) ŵ = 13.59 mm1
c = 13.5609 (2) ÅT = 123 K
β = 95.172 (1)°Irregular block, brown
V = 1430.76 (3) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
6460 independent reflections
Radiation source: fine-focus sealed tube6006 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.098, Tmax = 0.154k = 1818
13428 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0502P)2 + 4.7139P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6460 reflectionsΔρmax = 1.29 e Å3
263 parametersΔρmin = 1.71 e Å3
109 restraintsAbsolute structure: Flack (1983), 3046 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (2)
Crystal data top
(C5H6N)3[FeBr4]2BrV = 1430.76 (3) Å3
Mr = 1071.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5602 (1) ŵ = 13.59 mm1
b = 14.0125 (2) ÅT = 123 K
c = 13.5609 (2) Å0.30 × 0.25 × 0.20 mm
β = 95.172 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6460 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6006 reflections with I > 2σ(I)
Tmin = 0.098, Tmax = 0.154Rint = 0.038
13428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.106Δρmax = 1.29 e Å3
S = 1.07Δρmin = 1.71 e Å3
6460 reflectionsAbsolute structure: Flack (1983), 3046 Friedel pairs
263 parametersAbsolute structure parameter: 0.10 (2)
109 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27784 (12)0.49992 (6)0.74070 (6)0.02428 (19)
Br20.27108 (13)0.35971 (6)0.50468 (7)0.0250 (2)
Br30.02833 (11)0.60181 (6)0.50814 (7)0.02457 (19)
Br40.52742 (11)0.59765 (7)0.52624 (7)0.0268 (2)
Br50.52708 (11)0.89250 (6)0.95876 (7)0.02335 (19)
Br60.75284 (12)1.00789 (7)0.74713 (6)0.02522 (19)
Br71.02585 (12)0.91096 (8)0.97548 (8)0.0356 (3)
Br80.74006 (15)1.13935 (7)0.98802 (7)0.0350 (2)
Br90.74762 (11)0.65558 (7)0.83903 (6)0.02359 (19)
Fe10.27879 (15)0.51483 (9)0.56879 (9)0.0177 (2)
Fe20.76356 (16)0.98860 (9)0.91855 (9)0.0197 (3)
N10.7426 (11)0.4395 (6)0.7619 (7)0.038 (2)
H10.74270.49310.79590.045*
N20.7876 (12)0.7029 (7)1.0778 (6)0.0343 (19)
H20.79930.72331.01730.041*
N30.3634 (10)0.7457 (5)0.7543 (5)0.0203 (15)
H30.43240.70320.78630.024*
C10.8048 (15)0.4412 (10)0.6741 (9)0.047 (3)
H1A0.84570.49880.64700.056*
C20.8080 (17)0.3569 (11)0.6239 (9)0.054 (3)
H2A0.85820.35490.56220.065*
C30.7408 (16)0.2758 (9)0.6606 (10)0.048 (3)
H3A0.73630.21820.62340.058*
C40.6797 (14)0.2790 (8)0.7523 (9)0.038 (2)
H40.63710.22260.78100.046*
C50.6802 (15)0.3618 (9)0.8016 (7)0.038 (2)
H50.63570.36470.86490.046*
C60.7428 (14)0.6150 (8)1.0919 (7)0.035 (2)
H60.72460.57381.03630.042*
C70.7210 (16)0.5797 (8)1.1832 (9)0.041 (3)
H70.68730.51511.19190.049*
C80.7500 (12)0.6418 (8)1.2642 (7)0.032 (2)
H80.73610.61991.32940.039*
C90.7984 (14)0.7340 (8)1.2482 (7)0.035 (2)
H90.81920.77711.30210.042*
C100.8163 (16)0.7633 (7)1.1548 (8)0.039 (2)
H100.84970.82741.14330.047*
C110.1903 (12)0.7447 (6)0.7669 (6)0.0208 (17)
H110.14350.69890.80920.025*
C120.0815 (12)0.8104 (7)0.7182 (6)0.0260 (18)
H120.04200.81020.72620.031*
C130.1503 (13)0.8766 (6)0.6576 (7)0.0256 (19)
H130.07570.92310.62410.031*
C140.3330 (13)0.8744 (6)0.6459 (7)0.0260 (19)
H140.38310.91900.60350.031*
C150.4375 (12)0.8082 (7)0.6956 (7)0.0269 (19)
H150.56140.80620.68880.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0313 (4)0.0211 (4)0.0195 (4)0.0010 (4)0.0025 (3)0.0005 (3)
Br20.0325 (5)0.0188 (4)0.0241 (4)0.0009 (4)0.0039 (4)0.0032 (3)
Br30.0164 (4)0.0285 (5)0.0285 (4)0.0046 (4)0.0009 (3)0.0077 (4)
Br40.0168 (4)0.0268 (5)0.0369 (5)0.0041 (4)0.0030 (3)0.0016 (4)
Br50.0181 (4)0.0236 (4)0.0286 (4)0.0015 (3)0.0038 (3)0.0022 (3)
Br60.0311 (4)0.0272 (4)0.0175 (4)0.0014 (4)0.0031 (3)0.0012 (4)
Br70.0186 (4)0.0520 (7)0.0356 (5)0.0033 (4)0.0007 (4)0.0137 (5)
Br80.0507 (6)0.0292 (6)0.0246 (5)0.0099 (5)0.0008 (4)0.0090 (4)
Br90.0204 (4)0.0272 (5)0.0225 (4)0.0047 (4)0.0019 (3)0.0033 (3)
Fe10.0153 (5)0.0167 (6)0.0206 (6)0.0002 (5)0.0005 (4)0.0003 (5)
Fe20.0186 (5)0.0230 (6)0.0173 (6)0.0020 (5)0.0003 (4)0.0008 (5)
N10.025 (4)0.030 (4)0.056 (5)0.003 (3)0.013 (4)0.012 (4)
N20.038 (4)0.043 (5)0.023 (4)0.011 (4)0.010 (3)0.009 (3)
N30.020 (3)0.019 (3)0.021 (3)0.002 (3)0.006 (3)0.002 (3)
C10.030 (5)0.055 (6)0.055 (6)0.009 (5)0.004 (4)0.028 (5)
C20.042 (6)0.083 (8)0.038 (5)0.003 (6)0.009 (5)0.000 (6)
C30.040 (5)0.047 (6)0.056 (6)0.008 (5)0.005 (5)0.021 (5)
C40.028 (5)0.028 (5)0.055 (6)0.007 (4)0.013 (4)0.016 (4)
C50.036 (5)0.058 (6)0.021 (4)0.001 (5)0.005 (4)0.002 (4)
C60.043 (5)0.035 (5)0.024 (4)0.013 (4)0.011 (4)0.005 (4)
C70.044 (5)0.026 (5)0.051 (6)0.013 (4)0.009 (5)0.005 (4)
C80.028 (4)0.045 (5)0.024 (4)0.000 (4)0.001 (3)0.010 (4)
C90.037 (5)0.039 (5)0.029 (5)0.002 (4)0.004 (4)0.013 (4)
C100.049 (5)0.022 (4)0.048 (5)0.002 (4)0.010 (5)0.001 (4)
C110.023 (4)0.019 (4)0.021 (4)0.002 (3)0.004 (3)0.001 (3)
C120.023 (4)0.031 (4)0.025 (4)0.001 (4)0.004 (3)0.004 (3)
C130.027 (4)0.020 (4)0.029 (4)0.008 (4)0.001 (3)0.005 (3)
C140.028 (4)0.020 (4)0.031 (4)0.010 (3)0.008 (4)0.005 (3)
C150.021 (4)0.032 (4)0.028 (4)0.007 (4)0.003 (3)0.003 (4)
Geometric parameters (Å, º) top
Br1—Fe12.341 (2)C3—H3A0.9500
Br2—Fe12.340 (2)C4—C51.340 (16)
Br3—Fe12.338 (1)C4—H40.9500
Br4—Fe12.326 (1)C5—H50.9500
Br5—Fe22.342 (1)C6—C71.357 (15)
Br6—Fe22.335 (1)C6—H60.9500
Br7—Fe22.331 (2)C7—C81.404 (15)
Br8—Fe22.326 (2)C7—H70.9500
N1—C11.319 (15)C8—C91.366 (15)
N1—C51.320 (15)C8—H80.9500
N1—H10.8800C9—C101.349 (15)
N2—C61.296 (14)C9—H90.9500
N2—C101.347 (14)C10—H100.9500
N2—H20.8800C11—C121.364 (13)
N3—C111.335 (11)C11—H110.9500
N3—C151.340 (12)C12—C131.372 (13)
N3—H30.8800C12—H120.9500
C1—C21.36 (2)C13—C141.405 (13)
C1—H1A0.9500C13—H130.9500
C2—C31.357 (19)C14—C151.358 (13)
C2—H2A0.9500C14—H140.9500
C3—C41.366 (17)C15—H150.9500
Br4—Fe1—Br3107.44 (6)N1—C5—C4119.7 (9)
Br4—Fe1—Br2111.41 (6)N1—C5—H5120.2
Br3—Fe1—Br2111.18 (6)C4—C5—H5120.2
Br4—Fe1—Br1111.51 (6)N2—C6—C7122.4 (10)
Br3—Fe1—Br1108.77 (6)N2—C6—H6118.8
Br2—Fe1—Br1106.55 (6)C7—C6—H6118.8
Br8—Fe2—Br7112.54 (6)C6—C7—C8117.7 (10)
Br8—Fe2—Br6107.52 (6)C6—C7—H7121.1
Br7—Fe2—Br6109.63 (6)C8—C7—H7121.1
Br8—Fe2—Br5109.89 (6)C9—C8—C7119.1 (9)
Br7—Fe2—Br5107.40 (6)C9—C8—H8120.4
Br6—Fe2—Br5109.86 (6)C7—C8—H8120.4
C1—N1—C5123.5 (10)C10—C9—C8119.2 (10)
C1—N1—H1118.2C10—C9—H9120.4
C5—N1—H1118.2C8—C9—H9120.4
C6—N2—C10120.6 (9)N2—C10—C9121.0 (10)
C6—N2—H2119.7N2—C10—H10119.5
C10—N2—H2119.7C9—C10—H10119.5
C11—N3—C15123.4 (8)N3—C11—C12119.1 (8)
C11—N3—H3118.3N3—C11—H11120.4
C15—N3—H3118.3C12—C11—H11120.4
N1—C1—C2117.3 (11)C11—C12—C13120.1 (8)
N1—C1—H1A121.4C11—C12—H12120.0
C2—C1—H1A121.4C13—C12—H12120.0
C3—C2—C1121.2 (11)C12—C13—C14118.9 (8)
C3—C2—H2A119.4C12—C13—H13120.6
C1—C2—H2A119.4C14—C13—H13120.6
C2—C3—C4118.3 (11)C15—C14—C13119.5 (8)
C2—C3—H3A120.8C15—C14—H14120.3
C4—C3—H3A120.8C13—C14—H14120.3
C5—C4—C3119.8 (10)N3—C15—C14119.1 (8)
C5—C4—H4120.1N3—C15—H15120.5
C3—C4—H4120.1C14—C15—H15120.5
C5—N1—C1—C21.8 (17)C7—C8—C9—C100.3 (17)
N1—C1—C2—C33.5 (19)C6—N2—C10—C90.3 (17)
C1—C2—C3—C44.1 (19)C8—C9—C10—N20.2 (17)
C2—C3—C4—C52.9 (18)C15—N3—C11—C120.2 (13)
C1—N1—C5—C40.6 (17)N3—C11—C12—C130.3 (13)
C3—C4—C5—N11.2 (17)C11—C12—C13—C140.9 (14)
C10—N2—C6—C70.7 (16)C12—C13—C14—C151.0 (14)
N2—C6—C7—C80.5 (17)C11—N3—C15—C140.1 (13)
C6—C7—C8—C90.0 (16)C13—C14—C15—N30.5 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br90.882.353.202 (9)163
N2—H2···Br90.882.593.292 (8)137
N3—H3···Br90.882.523.279 (7)146

Experimental details

Crystal data
Chemical formula(C5H6N)3[FeBr4]2Br
Mr1071.21
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)7.5602 (1), 14.0125 (2), 13.5609 (2)
β (°) 95.172 (1)
V3)1430.76 (3)
Z2
Radiation typeMo Kα
µ (mm1)13.59
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.098, 0.154
No. of measured, independent and
observed [I > 2σ(I)] reflections
13428, 6460, 6006
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.07
No. of reflections6460
No. of parameters263
No. of restraints109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.71
Absolute structureFlack (1983), 3046 Friedel pairs
Absolute structure parameter0.10 (2)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br90.882.353.202 (9)163
N2—H2···Br90.882.593.292 (8)137
N3—H3···Br90.882.523.279 (7)146
 

Acknowledgements

The author thanks the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLowe, C. B., Schultz, A. J., Shaviv, R. & Carlin, R. L. (1994). Inorg. Chem. 33, 3051–3054.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds