organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-4-[2-(Methyl­sulfanyl)pyrimidin-4-yl]-1-(tetra­hydro­furan-3-yl)-1H-pyrazol-5-amine

aPfizer Global Research and Development, La Jolla Labs, 10614 Science Center Drive, San Diego, CA 92121, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: alex.yanovsky@pfizer.com

(Received 26 February 2009; accepted 27 February 2009; online 6 March 2009)

The title compound, C12H15N5OS, was obtained by reaction of 2-(2-(methyl­thio)pyrimidin-4-yl)-3-oxopropane­nitrile with (tetra­hydro­furan-3-yl)hydrazine dihydro­chloride, and the racemic product was subsequently separated by chiral chromatography (first peak; [α]D20 = +51.3°). The chiral center at the substituted atom of the tetra­hydro­furanyl group has an R-configuration. The pyrimidine and pyrazolyl rings are almost coplanar, their mean planes forming a dihedral angle of 6.4 (1)°. One of the H atoms of the amino group participates in an intra­molecular hydrogen bond with the pyrimidine N atom in position 3. The second H atom is involved in an inter­molecular hydrogen bond, which links the mol­ecules into an infinite chain.

Related literature

For the structure of a related compound with a methyl-substituted amino group, see: Liu et al. (2009[Liu, Z., Liu, K. K.-C., Elleraas, J., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o616.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N5OS

  • Mr = 277.35

  • Orthorhombic, P 21 21 2

  • a = 15.479 (2) Å

  • b = 7.1217 (10) Å

  • c = 11.7802 (17) Å

  • V = 1298.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 208 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker D8 APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.952

  • 6570 measured reflections

  • 3025 independent reflections

  • 2844 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.07

  • 3025 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1180 Friedel pairs

  • Flack parameter: −0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4i 0.87 2.19 2.9731 (19) 150
N3—H3B⋯N5 0.87 2.28 2.8616 (19) 124
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was obtained by reaction of 2-(2-(methylthio)pyrimidin-4-yl)-3-oxopropanenitrile with (tetrahydrofuran-3-yl)hydrazine dihydrochloride. The racemic product was then separated with the help of chiral chromatography; the title compound, (I), was collected as the earlier fraction, when eluted with methanol using the Chiralpak column (99% ee; [α]D20 = +51.3°).

The present X-ray study unambiguously established the R configuration of the chiral center at the C3 atom (Fig. 1).

The pyrimidine and pyrazolyl rings lie approximately in one plane; the dihedral angle formed by their mean planes is equal to 6.4 (1)°. The orientation of the tetrahydrofurane ring can be characterized by the dihedral angle 99.6 (1)° formed by the pyrazolyl plane with the C2—C3—C4 plane.

The molecular geometry of (I) is similar to that of related compound with a methyl substituent at the amino group (Liu et al., 2009). However, the crystal packing is substantially different as (I) has one additional H atom capable of H-bond formation. Indeed, while the H3A atom forms an intramolecular H-bond with the N5 atom of the pyrimidine ring similar to that observed in methyl-substituted structure, the H3B atom is involved in intermolecular H-bonding, which links molecules into infinite chains running along the a axis (Fig. 2; Table 2).

Related literature top

For the structure of a related compound with a methyl-substituted amino group, see: Liu et al. (2009).

Experimental top

To a suspension of 2-(2-(methylthio)pyrimidin-4-yl)-3-oxopropanenitrile (13.5 g, 70.0 mmol) in AcOH (100 ml) was added (tetrahydrofuran-3-yl)hydrazine dihydrochloride (12.3 g,70.0 mmol), and the resulting orange mixture was heated at 80°C under nitrogen for 3 h. Acetic acid was removed and the orange solid residue was partitioned between aqueous Na2CO3 (200 ml) and EtOAc (400 ml). The mixture was refluxed for 30 min. The separated organic layer was washed with brine, dried over sodium sulfate and concentrated to give the crude product as a brown gum (16.82 g, 87%). The brown gum (8.32 g) was purified by flash chromatography using 30–70% EtOAc in hexane to afford a yellow solid (5.96 g).

The part of the product thus obtained (4.85 g) was subjected to chiral chromatography on Chiralpak AS—H 21.2 x 250 mm column with 35% MeOH in CO2 at 140 bar as eluent (flow = 55 ml/min; UV detection at 260 nm). Two fractions corresponding to each of the enantiomers (Peak1 and Peak2) were collected and evaporated to dryness; the specific rotation [α]D20 was measured in CH2Cl2 solution and yielded the values of +51.3° and -52.1°, respectively. The enantiomer collected as Peak 1 was recrystallized from EtOAc/hexane to yield colorless single crystals.

Refinement top

All H atoms were placed in geometrically calculated positions (C—H 0.94 Å, 0.97 Å, 0.98 Å, and 0.99 Å for aromatic-, methyl-, methylene- and methine-H atoms, respectively; N—H 0.87 Å) and included in the refinement in the riding model approximation. The Uiso(H) values were set to 1.2Ueq of the carrying atom except for 1.5Ueq for methyl-H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% probability displacement ellipsoids and atom numbering scheme. H atoms are drawn as circles with arbitrary small radius.
[Figure 2] Fig. 2. Crystal packing for (I) viewed down the b axis; H-bonds are shown as dashed lines.
(R)-4-[2-(Methylsulfanyl)pyrimidin-4-yl]-1-(tetrahydrofuran-3-yl)- 1H-pyrazol-5-amine top
Crystal data top
C12H15N5OSF(000) = 584
Mr = 277.35Dx = 1.419 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 5004 reflections
a = 15.479 (2) Åθ = 2.6–28.1°
b = 7.1217 (10) ŵ = 0.25 mm1
c = 11.7802 (17) ÅT = 208 K
V = 1298.6 (3) Å3Block, yellow
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker D8 APEXII CCD area-detector
diffractometer
3025 independent reflections
Radiation source: fine-focus sealed tube2844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2019
Tmin = 0.844, Tmax = 0.952k = 49
6570 measured reflectionsl = 1513
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.0815P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.24 e Å3
3025 reflectionsΔρmin = 0.35 e Å3
174 parametersExtinction correction: SHELXL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.058 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1180 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Crystal data top
C12H15N5OSV = 1298.6 (3) Å3
Mr = 277.35Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 15.479 (2) ŵ = 0.25 mm1
b = 7.1217 (10) ÅT = 208 K
c = 11.7802 (17) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker D8 APEXII CCD area-detector
diffractometer
3025 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2844 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.952Rint = 0.043
6570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.24 e Å3
S = 1.07Δρmin = 0.35 e Å3
3025 reflectionsAbsolute structure: Flack (1983), 1180 Friedel pairs
174 parametersAbsolute structure parameter: 0.05 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61092 (15)0.3862 (4)1.04598 (18)0.0592 (6)
H1A0.66600.35501.08250.071*
H1B0.57580.46001.09890.071*
C20.62567 (13)0.4931 (3)0.93597 (14)0.0471 (4)
H2A0.67600.57610.94180.057*
H2B0.57480.56770.91540.057*
C30.64143 (10)0.3354 (3)0.85008 (15)0.0414 (4)
H30.60540.35620.78180.050*
C40.61086 (12)0.1571 (3)0.91240 (18)0.0514 (5)
H4A0.57210.08350.86390.062*
H4B0.66030.07850.93340.062*
C50.86860 (11)0.3275 (3)0.84766 (15)0.0456 (4)
H50.92280.33410.88350.055*
C60.85782 (9)0.3006 (3)0.72974 (14)0.0355 (4)
C70.76781 (9)0.3006 (2)0.71461 (13)0.0341 (3)
C80.92276 (9)0.2767 (2)0.64376 (13)0.0341 (3)
C91.01122 (10)0.2623 (3)0.66996 (14)0.0427 (4)
H91.03080.26710.74540.051*
C101.06733 (10)0.2412 (3)0.58192 (16)0.0466 (4)
H101.12640.22890.59870.056*
C110.95801 (10)0.2531 (3)0.45560 (14)0.0371 (3)
C120.81445 (13)0.2818 (3)0.31648 (16)0.0526 (5)
H12A0.78880.17850.35830.079*
H12B0.79170.28330.23980.079*
H12C0.80060.39930.35390.079*
N10.73257 (8)0.3241 (2)0.81741 (12)0.0393 (3)
N20.79452 (9)0.3423 (3)0.90197 (12)0.0488 (4)
N30.72268 (9)0.2815 (3)0.61696 (12)0.0493 (4)
H3A0.66650.28410.61820.059*
H3B0.74980.26670.55290.059*
N41.04322 (9)0.2367 (3)0.47231 (13)0.0453 (4)
N50.89635 (8)0.2704 (2)0.53396 (11)0.0341 (3)
O10.56646 (9)0.2206 (3)1.01145 (14)0.0630 (5)
S10.92940 (3)0.25258 (9)0.31179 (4)0.05191 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0580 (12)0.0835 (15)0.0362 (10)0.0152 (11)0.0142 (8)0.0072 (10)
C20.0412 (9)0.0661 (12)0.0340 (8)0.0096 (8)0.0063 (7)0.0034 (8)
C30.0248 (7)0.0669 (11)0.0325 (8)0.0036 (7)0.0002 (6)0.0017 (8)
C40.0343 (8)0.0675 (12)0.0523 (11)0.0037 (8)0.0026 (7)0.0040 (10)
C50.0288 (7)0.0790 (13)0.0290 (7)0.0006 (8)0.0025 (6)0.0024 (8)
C60.0258 (7)0.0512 (9)0.0293 (7)0.0007 (6)0.0009 (5)0.0000 (7)
C70.0269 (7)0.0473 (8)0.0282 (7)0.0005 (6)0.0020 (5)0.0004 (6)
C80.0262 (6)0.0443 (8)0.0320 (7)0.0002 (6)0.0010 (5)0.0008 (6)
C90.0277 (7)0.0655 (11)0.0350 (7)0.0007 (7)0.0029 (6)0.0006 (9)
C100.0259 (7)0.0684 (11)0.0456 (9)0.0031 (9)0.0023 (6)0.0035 (9)
C110.0315 (7)0.0471 (8)0.0327 (7)0.0020 (7)0.0027 (5)0.0045 (8)
C120.0438 (9)0.0754 (13)0.0385 (9)0.0067 (9)0.0061 (7)0.0041 (10)
N10.0254 (6)0.0642 (9)0.0282 (6)0.0003 (6)0.0011 (5)0.0007 (6)
N20.0290 (6)0.0884 (12)0.0290 (7)0.0003 (7)0.0043 (5)0.0034 (8)
N30.0284 (6)0.0917 (13)0.0278 (6)0.0010 (7)0.0043 (5)0.0065 (8)
N40.0293 (6)0.0657 (9)0.0408 (7)0.0002 (7)0.0045 (5)0.0076 (9)
N50.0287 (6)0.0435 (7)0.0300 (6)0.0016 (5)0.0020 (4)0.0026 (6)
O10.0460 (8)0.0826 (11)0.0604 (9)0.0041 (8)0.0233 (6)0.0185 (8)
S10.0394 (2)0.0852 (4)0.0311 (2)0.0016 (2)0.00439 (15)0.0075 (2)
Geometric parameters (Å, º) top
C1—O11.425 (3)C7—N11.339 (2)
C1—C21.520 (3)C7—N31.353 (2)
C1—H1A0.9800C8—N51.357 (2)
C1—H1B0.9800C8—C91.407 (2)
C2—C31.531 (3)C9—C101.361 (2)
C2—H2A0.9800C9—H90.9400
C2—H2B0.9800C10—N41.344 (2)
C3—N11.4644 (18)C10—H100.9400
C3—C41.541 (3)C11—N51.3334 (19)
C3—H30.9900C11—N41.339 (2)
C4—O11.428 (3)C11—S11.7510 (17)
C4—H4A0.9800C12—S11.792 (2)
C4—H4B0.9800C12—H12A0.9700
C5—N21.317 (2)C12—H12B0.9700
C5—C61.412 (2)C12—H12C0.9700
C5—H50.9400N1—N21.3888 (18)
C6—C71.4046 (19)N3—H3A0.8700
C6—C81.437 (2)N3—H3B0.8700
O1—C1—C2104.11 (19)N1—C7—C6106.83 (13)
O1—C1—H1A110.9N3—C7—C6128.32 (15)
C2—C1—H1A110.9N5—C8—C9119.98 (14)
O1—C1—H1B110.9N5—C8—C6117.70 (13)
C2—C1—H1B110.9C9—C8—C6122.32 (14)
H1A—C1—H1B109.0C10—C9—C8117.50 (15)
C1—C2—C3102.70 (18)C10—C9—H9121.2
C1—C2—H2A111.2C8—C9—H9121.2
C3—C2—H2A111.2N4—C10—C9123.87 (14)
C1—C2—H2B111.2N4—C10—H10118.1
C3—C2—H2B111.2C9—C10—H10118.1
H2A—C2—H2B109.1N5—C11—N4127.69 (15)
N1—C3—C2111.55 (15)N5—C11—S1119.28 (12)
N1—C3—C4112.07 (16)N4—C11—S1113.03 (12)
C2—C3—C4103.93 (14)S1—C12—H12A109.5
N1—C3—H3109.7S1—C12—H12B109.5
C2—C3—H3109.7H12A—C12—H12B109.5
C4—C3—H3109.7S1—C12—H12C109.5
O1—C4—C3106.03 (18)H12A—C12—H12C109.5
O1—C4—H4A110.5H12B—C12—H12C109.5
C3—C4—H4A110.5C7—N1—N2112.28 (13)
O1—C4—H4B110.5C7—N1—C3129.58 (14)
C3—C4—H4B110.5N2—N1—C3118.13 (13)
H4A—C4—H4B108.7C5—N2—N1104.20 (14)
N2—C5—C6112.69 (15)C7—N3—H3A120.0
N2—C5—H5123.7C7—N3—H3B120.0
C6—C5—H5123.7H3A—N3—H3B120.0
C7—C6—C5104.00 (14)C11—N4—C10114.37 (14)
C7—C6—C8127.19 (14)C11—N5—C8116.57 (13)
C5—C6—C8128.81 (14)C1—O1—C4105.25 (15)
N1—C7—N3124.85 (14)C11—S1—C12102.76 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.872.192.9731 (19)150
N3—H3B···N50.872.282.8616 (19)124
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H15N5OS
Mr277.35
Crystal system, space groupOrthorhombic, P21212
Temperature (K)208
a, b, c (Å)15.479 (2), 7.1217 (10), 11.7802 (17)
V3)1298.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker D8 APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.844, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
6570, 3025, 2844
Rint0.043
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.07
No. of reflections3025
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.35
Absolute structureFlack (1983), 1180 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.872.192.9731 (19)149.5
N3—H3B···N50.872.282.8616 (19)124.4
Symmetry code: (i) x1/2, y+1/2, z+1.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Z., Liu, K. K.-C., Elleraas, J., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds